1319 lines
50 KiB
Python
1319 lines
50 KiB
Python
# coding=utf-8
|
|
# pylint: disable-msg=E1101,W0612
|
|
|
|
import pytz
|
|
import pytest
|
|
|
|
from datetime import timedelta, datetime
|
|
|
|
from distutils.version import LooseVersion
|
|
from numpy import nan
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from pandas import (Series, DataFrame, isna, date_range,
|
|
MultiIndex, Index, Timestamp, NaT, IntervalIndex,
|
|
Categorical)
|
|
from pandas.compat import range
|
|
from pandas._libs.tslib import iNaT
|
|
from pandas.core.series import remove_na
|
|
from pandas.util.testing import assert_series_equal, assert_frame_equal
|
|
import pandas.util.testing as tm
|
|
import pandas.util._test_decorators as td
|
|
|
|
from .common import TestData
|
|
|
|
try:
|
|
import scipy
|
|
_is_scipy_ge_0190 = (LooseVersion(scipy.__version__) >=
|
|
LooseVersion('0.19.0'))
|
|
except:
|
|
_is_scipy_ge_0190 = False
|
|
|
|
|
|
def _skip_if_no_pchip():
|
|
try:
|
|
from scipy.interpolate import pchip_interpolate # noqa
|
|
except ImportError:
|
|
import pytest
|
|
pytest.skip('scipy.interpolate.pchip missing')
|
|
|
|
|
|
def _skip_if_no_akima():
|
|
try:
|
|
from scipy.interpolate import Akima1DInterpolator # noqa
|
|
except ImportError:
|
|
import pytest
|
|
pytest.skip('scipy.interpolate.Akima1DInterpolator missing')
|
|
|
|
|
|
def _simple_ts(start, end, freq='D'):
|
|
rng = date_range(start, end, freq=freq)
|
|
return Series(np.random.randn(len(rng)), index=rng)
|
|
|
|
|
|
class TestSeriesMissingData(TestData):
|
|
|
|
def test_remove_na_deprecation(self):
|
|
# see gh-16971
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
remove_na(Series([]))
|
|
|
|
def test_timedelta_fillna(self):
|
|
# GH 3371
|
|
s = Series([Timestamp('20130101'), Timestamp('20130101'),
|
|
Timestamp('20130102'), Timestamp('20130103 9:01:01')])
|
|
td = s.diff()
|
|
|
|
# reg fillna
|
|
result = td.fillna(0)
|
|
expected = Series([timedelta(0), timedelta(0), timedelta(1),
|
|
timedelta(days=1, seconds=9 * 3600 + 60 + 1)])
|
|
assert_series_equal(result, expected)
|
|
|
|
# interprested as seconds
|
|
result = td.fillna(1)
|
|
expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1),
|
|
timedelta(days=1, seconds=9 * 3600 + 60 + 1)])
|
|
assert_series_equal(result, expected)
|
|
|
|
result = td.fillna(timedelta(days=1, seconds=1))
|
|
expected = Series([timedelta(days=1, seconds=1), timedelta(0),
|
|
timedelta(1),
|
|
timedelta(days=1, seconds=9 * 3600 + 60 + 1)])
|
|
assert_series_equal(result, expected)
|
|
|
|
result = td.fillna(np.timedelta64(int(1e9)))
|
|
expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1),
|
|
timedelta(days=1, seconds=9 * 3600 + 60 + 1)])
|
|
assert_series_equal(result, expected)
|
|
|
|
result = td.fillna(NaT)
|
|
expected = Series([NaT, timedelta(0), timedelta(1),
|
|
timedelta(days=1, seconds=9 * 3600 + 60 + 1)],
|
|
dtype='m8[ns]')
|
|
assert_series_equal(result, expected)
|
|
|
|
# ffill
|
|
td[2] = np.nan
|
|
result = td.ffill()
|
|
expected = td.fillna(0)
|
|
expected[0] = np.nan
|
|
assert_series_equal(result, expected)
|
|
|
|
# bfill
|
|
td[2] = np.nan
|
|
result = td.bfill()
|
|
expected = td.fillna(0)
|
|
expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1)
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_datetime64_fillna(self):
|
|
|
|
s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp(
|
|
'20130102'), Timestamp('20130103 9:01:01')])
|
|
s[2] = np.nan
|
|
|
|
# reg fillna
|
|
result = s.fillna(Timestamp('20130104'))
|
|
expected = Series([Timestamp('20130101'), Timestamp(
|
|
'20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')])
|
|
assert_series_equal(result, expected)
|
|
|
|
result = s.fillna(NaT)
|
|
expected = s
|
|
assert_series_equal(result, expected)
|
|
|
|
# ffill
|
|
result = s.ffill()
|
|
expected = Series([Timestamp('20130101'), Timestamp(
|
|
'20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01')])
|
|
assert_series_equal(result, expected)
|
|
|
|
# bfill
|
|
result = s.bfill()
|
|
expected = Series([Timestamp('20130101'), Timestamp('20130101'),
|
|
Timestamp('20130103 9:01:01'), Timestamp(
|
|
'20130103 9:01:01')])
|
|
assert_series_equal(result, expected)
|
|
|
|
# GH 6587
|
|
# make sure that we are treating as integer when filling
|
|
# this also tests inference of a datetime-like with NaT's
|
|
s = Series([pd.NaT, pd.NaT, '2013-08-05 15:30:00.000001'])
|
|
expected = Series(
|
|
['2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001',
|
|
'2013-08-05 15:30:00.000001'], dtype='M8[ns]')
|
|
result = s.fillna(method='backfill')
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_datetime64_tz_fillna(self):
|
|
|
|
for tz in ['US/Eastern', 'Asia/Tokyo']:
|
|
# DatetimeBlock
|
|
s = Series([Timestamp('2011-01-01 10:00'), pd.NaT,
|
|
Timestamp('2011-01-03 10:00'), pd.NaT])
|
|
null_loc = pd.Series([False, True, False, True])
|
|
|
|
result = s.fillna(pd.Timestamp('2011-01-02 10:00'))
|
|
expected = Series([Timestamp('2011-01-01 10:00'),
|
|
Timestamp('2011-01-02 10:00'),
|
|
Timestamp('2011-01-03 10:00'),
|
|
Timestamp('2011-01-02 10:00')])
|
|
tm.assert_series_equal(expected, result)
|
|
# check s is not changed
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz))
|
|
expected = Series([Timestamp('2011-01-01 10:00'),
|
|
Timestamp('2011-01-02 10:00', tz=tz),
|
|
Timestamp('2011-01-03 10:00'),
|
|
Timestamp('2011-01-02 10:00', tz=tz)])
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
result = s.fillna('AAA')
|
|
expected = Series([Timestamp('2011-01-01 10:00'), 'AAA',
|
|
Timestamp('2011-01-03 10:00'), 'AAA'],
|
|
dtype=object)
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz),
|
|
3: pd.Timestamp('2011-01-04 10:00')})
|
|
expected = Series([Timestamp('2011-01-01 10:00'),
|
|
Timestamp('2011-01-02 10:00', tz=tz),
|
|
Timestamp('2011-01-03 10:00'),
|
|
Timestamp('2011-01-04 10:00')])
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
result = s.fillna({1: pd.Timestamp('2011-01-02 10:00'),
|
|
3: pd.Timestamp('2011-01-04 10:00')})
|
|
expected = Series([Timestamp('2011-01-01 10:00'),
|
|
Timestamp('2011-01-02 10:00'),
|
|
Timestamp('2011-01-03 10:00'),
|
|
Timestamp('2011-01-04 10:00')])
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
# DatetimeBlockTZ
|
|
idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT,
|
|
'2011-01-03 10:00', pd.NaT], tz=tz)
|
|
s = pd.Series(idx)
|
|
assert s.dtype == 'datetime64[ns, {0}]'.format(tz)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
result = s.fillna(pd.Timestamp('2011-01-02 10:00'))
|
|
expected = Series([Timestamp('2011-01-01 10:00', tz=tz),
|
|
Timestamp('2011-01-02 10:00'),
|
|
Timestamp('2011-01-03 10:00', tz=tz),
|
|
Timestamp('2011-01-02 10:00')])
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz))
|
|
idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00',
|
|
'2011-01-03 10:00', '2011-01-02 10:00'],
|
|
tz=tz)
|
|
expected = Series(idx)
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
result = s.fillna(pd.Timestamp('2011-01-02 10:00',
|
|
tz=tz).to_pydatetime())
|
|
idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00',
|
|
'2011-01-03 10:00', '2011-01-02 10:00'],
|
|
tz=tz)
|
|
expected = Series(idx)
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
result = s.fillna('AAA')
|
|
expected = Series([Timestamp('2011-01-01 10:00', tz=tz), 'AAA',
|
|
Timestamp('2011-01-03 10:00', tz=tz), 'AAA'],
|
|
dtype=object)
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz),
|
|
3: pd.Timestamp('2011-01-04 10:00')})
|
|
expected = Series([Timestamp('2011-01-01 10:00', tz=tz),
|
|
Timestamp('2011-01-02 10:00', tz=tz),
|
|
Timestamp('2011-01-03 10:00', tz=tz),
|
|
Timestamp('2011-01-04 10:00')])
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz),
|
|
3: pd.Timestamp('2011-01-04 10:00', tz=tz)})
|
|
expected = Series([Timestamp('2011-01-01 10:00', tz=tz),
|
|
Timestamp('2011-01-02 10:00', tz=tz),
|
|
Timestamp('2011-01-03 10:00', tz=tz),
|
|
Timestamp('2011-01-04 10:00', tz=tz)])
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
# filling with a naive/other zone, coerce to object
|
|
result = s.fillna(Timestamp('20130101'))
|
|
expected = Series([Timestamp('2011-01-01 10:00', tz=tz),
|
|
Timestamp('2013-01-01'),
|
|
Timestamp('2011-01-03 10:00', tz=tz),
|
|
Timestamp('2013-01-01')])
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
result = s.fillna(Timestamp('20130101', tz='US/Pacific'))
|
|
expected = Series([Timestamp('2011-01-01 10:00', tz=tz),
|
|
Timestamp('2013-01-01', tz='US/Pacific'),
|
|
Timestamp('2011-01-03 10:00', tz=tz),
|
|
Timestamp('2013-01-01', tz='US/Pacific')])
|
|
tm.assert_series_equal(expected, result)
|
|
tm.assert_series_equal(pd.isna(s), null_loc)
|
|
|
|
# with timezone
|
|
# GH 15855
|
|
df = pd.Series([pd.Timestamp('2012-11-11 00:00:00+01:00'), pd.NaT])
|
|
exp = pd.Series([pd.Timestamp('2012-11-11 00:00:00+01:00'),
|
|
pd.Timestamp('2012-11-11 00:00:00+01:00')])
|
|
assert_series_equal(df.fillna(method='pad'), exp)
|
|
|
|
df = pd.Series([pd.NaT, pd.Timestamp('2012-11-11 00:00:00+01:00')])
|
|
exp = pd.Series([pd.Timestamp('2012-11-11 00:00:00+01:00'),
|
|
pd.Timestamp('2012-11-11 00:00:00+01:00')])
|
|
assert_series_equal(df.fillna(method='bfill'), exp)
|
|
|
|
def test_fillna_consistency(self):
|
|
# GH 16402
|
|
# fillna with a tz aware to a tz-naive, should result in object
|
|
|
|
s = Series([Timestamp('20130101'), pd.NaT])
|
|
|
|
result = s.fillna(Timestamp('20130101', tz='US/Eastern'))
|
|
expected = Series([Timestamp('20130101'),
|
|
Timestamp('2013-01-01', tz='US/Eastern')],
|
|
dtype='object')
|
|
assert_series_equal(result, expected)
|
|
|
|
# where (we ignore the errors=)
|
|
result = s.where([True, False],
|
|
Timestamp('20130101', tz='US/Eastern'),
|
|
errors='ignore')
|
|
assert_series_equal(result, expected)
|
|
|
|
result = s.where([True, False],
|
|
Timestamp('20130101', tz='US/Eastern'),
|
|
errors='ignore')
|
|
assert_series_equal(result, expected)
|
|
|
|
# with a non-datetime
|
|
result = s.fillna('foo')
|
|
expected = Series([Timestamp('20130101'),
|
|
'foo'])
|
|
assert_series_equal(result, expected)
|
|
|
|
# assignment
|
|
s2 = s.copy()
|
|
s2[1] = 'foo'
|
|
assert_series_equal(s2, expected)
|
|
|
|
def test_datetime64tz_fillna_round_issue(self):
|
|
# GH 14872
|
|
|
|
data = pd.Series([pd.NaT, pd.NaT,
|
|
datetime(2016, 12, 12, 22, 24, 6, 100001,
|
|
tzinfo=pytz.utc)])
|
|
|
|
filled = data.fillna(method='bfill')
|
|
|
|
expected = pd.Series([datetime(2016, 12, 12, 22, 24, 6,
|
|
100001, tzinfo=pytz.utc),
|
|
datetime(2016, 12, 12, 22, 24, 6,
|
|
100001, tzinfo=pytz.utc),
|
|
datetime(2016, 12, 12, 22, 24, 6,
|
|
100001, tzinfo=pytz.utc)])
|
|
|
|
assert_series_equal(filled, expected)
|
|
|
|
def test_fillna_downcast(self):
|
|
# GH 15277
|
|
# infer int64 from float64
|
|
s = pd.Series([1., np.nan])
|
|
result = s.fillna(0, downcast='infer')
|
|
expected = pd.Series([1, 0])
|
|
assert_series_equal(result, expected)
|
|
|
|
# infer int64 from float64 when fillna value is a dict
|
|
s = pd.Series([1., np.nan])
|
|
result = s.fillna({1: 0}, downcast='infer')
|
|
expected = pd.Series([1, 0])
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_fillna_int(self):
|
|
s = Series(np.random.randint(-100, 100, 50))
|
|
s.fillna(method='ffill', inplace=True)
|
|
assert_series_equal(s.fillna(method='ffill', inplace=False), s)
|
|
|
|
def test_fillna_raise(self):
|
|
s = Series(np.random.randint(-100, 100, 50))
|
|
pytest.raises(TypeError, s.fillna, [1, 2])
|
|
pytest.raises(TypeError, s.fillna, (1, 2))
|
|
|
|
# related GH 9217, make sure limit is an int and greater than 0
|
|
s = Series([1, 2, 3, None])
|
|
for limit in [-1, 0, 1., 2.]:
|
|
for method in ['backfill', 'bfill', 'pad', 'ffill', None]:
|
|
with pytest.raises(ValueError):
|
|
s.fillna(1, limit=limit, method=method)
|
|
|
|
def test_categorical_nan_equality(self):
|
|
cat = Series(Categorical(["a", "b", "c", np.nan]))
|
|
exp = Series([True, True, True, False])
|
|
res = (cat == cat)
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
def test_categorical_nan_handling(self):
|
|
|
|
# NaNs are represented as -1 in labels
|
|
s = Series(Categorical(["a", "b", np.nan, "a"]))
|
|
tm.assert_index_equal(s.cat.categories, Index(["a", "b"]))
|
|
tm.assert_numpy_array_equal(s.values.codes,
|
|
np.array([0, 1, -1, 0], dtype=np.int8))
|
|
|
|
@pytest.mark.parametrize('fill_value, expected_output', [
|
|
('a', ['a', 'a', 'b', 'a', 'a']),
|
|
({1: 'a', 3: 'b', 4: 'b'}, ['a', 'a', 'b', 'b', 'b']),
|
|
({1: 'a'}, ['a', 'a', 'b', np.nan, np.nan]),
|
|
({1: 'a', 3: 'b'}, ['a', 'a', 'b', 'b', np.nan]),
|
|
(Series('a'), ['a', np.nan, 'b', np.nan, np.nan]),
|
|
(Series('a', index=[1]), ['a', 'a', 'b', np.nan, np.nan]),
|
|
(Series({1: 'a', 3: 'b'}), ['a', 'a', 'b', 'b', np.nan]),
|
|
(Series(['a', 'b'], index=[3, 4]), ['a', np.nan, 'b', 'a', 'b'])
|
|
])
|
|
def test_fillna_categorical(self, fill_value, expected_output):
|
|
# GH 17033
|
|
# Test fillna for a Categorical series
|
|
data = ['a', np.nan, 'b', np.nan, np.nan]
|
|
s = Series(Categorical(data, categories=['a', 'b']))
|
|
exp = Series(Categorical(expected_output, categories=['a', 'b']))
|
|
tm.assert_series_equal(s.fillna(fill_value), exp)
|
|
|
|
def test_fillna_categorical_raise(self):
|
|
data = ['a', np.nan, 'b', np.nan, np.nan]
|
|
s = Series(Categorical(data, categories=['a', 'b']))
|
|
|
|
with tm.assert_raises_regex(ValueError,
|
|
"fill value must be in categories"):
|
|
s.fillna('d')
|
|
|
|
with tm.assert_raises_regex(ValueError,
|
|
"fill value must be in categories"):
|
|
s.fillna(Series('d'))
|
|
|
|
with tm.assert_raises_regex(ValueError,
|
|
"fill value must be in categories"):
|
|
s.fillna({1: 'd', 3: 'a'})
|
|
|
|
with tm.assert_raises_regex(TypeError,
|
|
'"value" parameter must be a scalar or '
|
|
'dict, but you passed a "list"'):
|
|
s.fillna(['a', 'b'])
|
|
|
|
with tm.assert_raises_regex(TypeError,
|
|
'"value" parameter must be a scalar or '
|
|
'dict, but you passed a "tuple"'):
|
|
s.fillna(('a', 'b'))
|
|
|
|
with tm.assert_raises_regex(TypeError,
|
|
'"value" parameter must be a scalar, dict '
|
|
'or Series, but you passed a "DataFrame"'):
|
|
s.fillna(DataFrame({1: ['a'], 3: ['b']}))
|
|
|
|
def test_fillna_nat(self):
|
|
series = Series([0, 1, 2, iNaT], dtype='M8[ns]')
|
|
|
|
filled = series.fillna(method='pad')
|
|
filled2 = series.fillna(value=series.values[2])
|
|
|
|
expected = series.copy()
|
|
expected.values[3] = expected.values[2]
|
|
|
|
assert_series_equal(filled, expected)
|
|
assert_series_equal(filled2, expected)
|
|
|
|
df = DataFrame({'A': series})
|
|
filled = df.fillna(method='pad')
|
|
filled2 = df.fillna(value=series.values[2])
|
|
expected = DataFrame({'A': expected})
|
|
assert_frame_equal(filled, expected)
|
|
assert_frame_equal(filled2, expected)
|
|
|
|
series = Series([iNaT, 0, 1, 2], dtype='M8[ns]')
|
|
|
|
filled = series.fillna(method='bfill')
|
|
filled2 = series.fillna(value=series[1])
|
|
|
|
expected = series.copy()
|
|
expected[0] = expected[1]
|
|
|
|
assert_series_equal(filled, expected)
|
|
assert_series_equal(filled2, expected)
|
|
|
|
df = DataFrame({'A': series})
|
|
filled = df.fillna(method='bfill')
|
|
filled2 = df.fillna(value=series[1])
|
|
expected = DataFrame({'A': expected})
|
|
assert_frame_equal(filled, expected)
|
|
assert_frame_equal(filled2, expected)
|
|
|
|
def test_isna_for_inf(self):
|
|
s = Series(['a', np.inf, np.nan, 1.0])
|
|
with pd.option_context('mode.use_inf_as_na', True):
|
|
r = s.isna()
|
|
dr = s.dropna()
|
|
e = Series([False, True, True, False])
|
|
de = Series(['a', 1.0], index=[0, 3])
|
|
tm.assert_series_equal(r, e)
|
|
tm.assert_series_equal(dr, de)
|
|
|
|
@tm.capture_stdout
|
|
def test_isnull_for_inf_deprecated(self):
|
|
# gh-17115
|
|
s = Series(['a', np.inf, np.nan, 1.0])
|
|
with pd.option_context('mode.use_inf_as_null', True):
|
|
r = s.isna()
|
|
dr = s.dropna()
|
|
|
|
e = Series([False, True, True, False])
|
|
de = Series(['a', 1.0], index=[0, 3])
|
|
tm.assert_series_equal(r, e)
|
|
tm.assert_series_equal(dr, de)
|
|
|
|
def test_fillna(self):
|
|
ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5))
|
|
|
|
tm.assert_series_equal(ts, ts.fillna(method='ffill'))
|
|
|
|
ts[2] = np.NaN
|
|
|
|
exp = Series([0., 1., 1., 3., 4.], index=ts.index)
|
|
tm.assert_series_equal(ts.fillna(method='ffill'), exp)
|
|
|
|
exp = Series([0., 1., 3., 3., 4.], index=ts.index)
|
|
tm.assert_series_equal(ts.fillna(method='backfill'), exp)
|
|
|
|
exp = Series([0., 1., 5., 3., 4.], index=ts.index)
|
|
tm.assert_series_equal(ts.fillna(value=5), exp)
|
|
|
|
pytest.raises(ValueError, ts.fillna)
|
|
pytest.raises(ValueError, self.ts.fillna, value=0, method='ffill')
|
|
|
|
# GH 5703
|
|
s1 = Series([np.nan])
|
|
s2 = Series([1])
|
|
result = s1.fillna(s2)
|
|
expected = Series([1.])
|
|
assert_series_equal(result, expected)
|
|
result = s1.fillna({})
|
|
assert_series_equal(result, s1)
|
|
result = s1.fillna(Series(()))
|
|
assert_series_equal(result, s1)
|
|
result = s2.fillna(s1)
|
|
assert_series_equal(result, s2)
|
|
result = s1.fillna({0: 1})
|
|
assert_series_equal(result, expected)
|
|
result = s1.fillna({1: 1})
|
|
assert_series_equal(result, Series([np.nan]))
|
|
result = s1.fillna({0: 1, 1: 1})
|
|
assert_series_equal(result, expected)
|
|
result = s1.fillna(Series({0: 1, 1: 1}))
|
|
assert_series_equal(result, expected)
|
|
result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5]))
|
|
assert_series_equal(result, s1)
|
|
|
|
s1 = Series([0, 1, 2], list('abc'))
|
|
s2 = Series([0, np.nan, 2], list('bac'))
|
|
result = s2.fillna(s1)
|
|
expected = Series([0, 0, 2.], list('bac'))
|
|
assert_series_equal(result, expected)
|
|
|
|
# limit
|
|
s = Series(np.nan, index=[0, 1, 2])
|
|
result = s.fillna(999, limit=1)
|
|
expected = Series([999, np.nan, np.nan], index=[0, 1, 2])
|
|
assert_series_equal(result, expected)
|
|
|
|
result = s.fillna(999, limit=2)
|
|
expected = Series([999, 999, np.nan], index=[0, 1, 2])
|
|
assert_series_equal(result, expected)
|
|
|
|
# GH 9043
|
|
# make sure a string representation of int/float values can be filled
|
|
# correctly without raising errors or being converted
|
|
vals = ['0', '1.5', '-0.3']
|
|
for val in vals:
|
|
s = Series([0, 1, np.nan, np.nan, 4], dtype='float64')
|
|
result = s.fillna(val)
|
|
expected = Series([0, 1, val, val, 4], dtype='object')
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_fillna_bug(self):
|
|
x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd'])
|
|
filled = x.fillna(method='ffill')
|
|
expected = Series([nan, 1., 1., 3., 3.], x.index)
|
|
assert_series_equal(filled, expected)
|
|
|
|
filled = x.fillna(method='bfill')
|
|
expected = Series([1., 1., 3., 3., nan], x.index)
|
|
assert_series_equal(filled, expected)
|
|
|
|
def test_fillna_inplace(self):
|
|
x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd'])
|
|
y = x.copy()
|
|
|
|
y.fillna(value=0, inplace=True)
|
|
|
|
expected = x.fillna(value=0)
|
|
assert_series_equal(y, expected)
|
|
|
|
def test_fillna_invalid_method(self):
|
|
try:
|
|
self.ts.fillna(method='ffil')
|
|
except ValueError as inst:
|
|
assert 'ffil' in str(inst)
|
|
|
|
def test_ffill(self):
|
|
ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5))
|
|
ts[2] = np.NaN
|
|
assert_series_equal(ts.ffill(), ts.fillna(method='ffill'))
|
|
|
|
def test_ffill_mixed_dtypes_without_missing_data(self):
|
|
# GH14956
|
|
series = pd.Series([datetime(2015, 1, 1, tzinfo=pytz.utc), 1])
|
|
result = series.ffill()
|
|
assert_series_equal(series, result)
|
|
|
|
def test_bfill(self):
|
|
ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5))
|
|
ts[2] = np.NaN
|
|
assert_series_equal(ts.bfill(), ts.fillna(method='bfill'))
|
|
|
|
def test_timedelta64_nan(self):
|
|
|
|
td = Series([timedelta(days=i) for i in range(10)])
|
|
|
|
# nan ops on timedeltas
|
|
td1 = td.copy()
|
|
td1[0] = np.nan
|
|
assert isna(td1[0])
|
|
assert td1[0].value == iNaT
|
|
td1[0] = td[0]
|
|
assert not isna(td1[0])
|
|
|
|
td1[1] = iNaT
|
|
assert isna(td1[1])
|
|
assert td1[1].value == iNaT
|
|
td1[1] = td[1]
|
|
assert not isna(td1[1])
|
|
|
|
td1[2] = NaT
|
|
assert isna(td1[2])
|
|
assert td1[2].value == iNaT
|
|
td1[2] = td[2]
|
|
assert not isna(td1[2])
|
|
|
|
# boolean setting
|
|
# this doesn't work, not sure numpy even supports it
|
|
# result = td[(td>np.timedelta64(timedelta(days=3))) &
|
|
# td<np.timedelta64(timedelta(days=7)))] = np.nan
|
|
# assert isna(result).sum() == 7
|
|
|
|
# NumPy limitiation =(
|
|
|
|
# def test_logical_range_select(self):
|
|
# np.random.seed(12345)
|
|
# selector = -0.5 <= self.ts <= 0.5
|
|
# expected = (self.ts >= -0.5) & (self.ts <= 0.5)
|
|
# assert_series_equal(selector, expected)
|
|
|
|
def test_dropna_empty(self):
|
|
s = Series([])
|
|
assert len(s.dropna()) == 0
|
|
s.dropna(inplace=True)
|
|
assert len(s) == 0
|
|
|
|
# invalid axis
|
|
pytest.raises(ValueError, s.dropna, axis=1)
|
|
|
|
def test_datetime64_tz_dropna(self):
|
|
# DatetimeBlock
|
|
s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp(
|
|
'2011-01-03 10:00'), pd.NaT])
|
|
result = s.dropna()
|
|
expected = Series([Timestamp('2011-01-01 10:00'),
|
|
Timestamp('2011-01-03 10:00')], index=[0, 2])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# DatetimeBlockTZ
|
|
idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT,
|
|
'2011-01-03 10:00', pd.NaT],
|
|
tz='Asia/Tokyo')
|
|
s = pd.Series(idx)
|
|
assert s.dtype == 'datetime64[ns, Asia/Tokyo]'
|
|
result = s.dropna()
|
|
expected = Series([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'),
|
|
Timestamp('2011-01-03 10:00', tz='Asia/Tokyo')],
|
|
index=[0, 2])
|
|
assert result.dtype == 'datetime64[ns, Asia/Tokyo]'
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_dropna_no_nan(self):
|
|
for s in [Series([1, 2, 3], name='x'), Series(
|
|
[False, True, False], name='x')]:
|
|
|
|
result = s.dropna()
|
|
tm.assert_series_equal(result, s)
|
|
assert result is not s
|
|
|
|
s2 = s.copy()
|
|
s2.dropna(inplace=True)
|
|
tm.assert_series_equal(s2, s)
|
|
|
|
def test_dropna_intervals(self):
|
|
s = Series([np.nan, 1, 2, 3], IntervalIndex.from_arrays(
|
|
[np.nan, 0, 1, 2],
|
|
[np.nan, 1, 2, 3]))
|
|
|
|
result = s.dropna()
|
|
expected = s.iloc[1:]
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_valid(self):
|
|
ts = self.ts.copy()
|
|
ts[::2] = np.NaN
|
|
|
|
result = ts.dropna()
|
|
assert len(result) == ts.count()
|
|
tm.assert_series_equal(result, ts[1::2])
|
|
tm.assert_series_equal(result, ts[pd.notna(ts)])
|
|
|
|
def test_isna(self):
|
|
ser = Series([0, 5.4, 3, nan, -0.001])
|
|
expected = Series([False, False, False, True, False])
|
|
tm.assert_series_equal(ser.isna(), expected)
|
|
|
|
ser = Series(["hi", "", nan])
|
|
expected = Series([False, False, True])
|
|
tm.assert_series_equal(ser.isna(), expected)
|
|
|
|
def test_notna(self):
|
|
ser = Series([0, 5.4, 3, nan, -0.001])
|
|
expected = Series([True, True, True, False, True])
|
|
tm.assert_series_equal(ser.notna(), expected)
|
|
|
|
ser = Series(["hi", "", nan])
|
|
expected = Series([True, True, False])
|
|
tm.assert_series_equal(ser.notna(), expected)
|
|
|
|
def test_pad_nan(self):
|
|
x = Series([np.nan, 1., np.nan, 3., np.nan], ['z', 'a', 'b', 'c', 'd'],
|
|
dtype=float)
|
|
|
|
x.fillna(method='pad', inplace=True)
|
|
|
|
expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0],
|
|
['z', 'a', 'b', 'c', 'd'], dtype=float)
|
|
assert_series_equal(x[1:], expected[1:])
|
|
assert np.isnan(x[0]), np.isnan(expected[0])
|
|
|
|
def test_pad_require_monotonicity(self):
|
|
rng = date_range('1/1/2000', '3/1/2000', freq='B')
|
|
|
|
# neither monotonic increasing or decreasing
|
|
rng2 = rng[[1, 0, 2]]
|
|
|
|
pytest.raises(ValueError, rng2.get_indexer, rng, method='pad')
|
|
|
|
def test_dropna_preserve_name(self):
|
|
self.ts[:5] = np.nan
|
|
result = self.ts.dropna()
|
|
assert result.name == self.ts.name
|
|
name = self.ts.name
|
|
ts = self.ts.copy()
|
|
ts.dropna(inplace=True)
|
|
assert ts.name == name
|
|
|
|
def test_fill_value_when_combine_const(self):
|
|
# GH12723
|
|
s = Series([0, 1, np.nan, 3, 4, 5])
|
|
|
|
exp = s.fillna(0).add(2)
|
|
res = s.add(2, fill_value=0)
|
|
assert_series_equal(res, exp)
|
|
|
|
def test_series_fillna_limit(self):
|
|
index = np.arange(10)
|
|
s = Series(np.random.randn(10), index=index)
|
|
|
|
result = s[:2].reindex(index)
|
|
result = result.fillna(method='pad', limit=5)
|
|
|
|
expected = s[:2].reindex(index).fillna(method='pad')
|
|
expected[-3:] = np.nan
|
|
assert_series_equal(result, expected)
|
|
|
|
result = s[-2:].reindex(index)
|
|
result = result.fillna(method='bfill', limit=5)
|
|
|
|
expected = s[-2:].reindex(index).fillna(method='backfill')
|
|
expected[:3] = np.nan
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_sparse_series_fillna_limit(self):
|
|
index = np.arange(10)
|
|
s = Series(np.random.randn(10), index=index)
|
|
|
|
ss = s[:2].reindex(index).to_sparse()
|
|
result = ss.fillna(method='pad', limit=5)
|
|
expected = ss.fillna(method='pad', limit=5)
|
|
expected = expected.to_dense()
|
|
expected[-3:] = np.nan
|
|
expected = expected.to_sparse()
|
|
assert_series_equal(result, expected)
|
|
|
|
ss = s[-2:].reindex(index).to_sparse()
|
|
result = ss.fillna(method='backfill', limit=5)
|
|
expected = ss.fillna(method='backfill')
|
|
expected = expected.to_dense()
|
|
expected[:3] = np.nan
|
|
expected = expected.to_sparse()
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_sparse_series_pad_backfill_limit(self):
|
|
index = np.arange(10)
|
|
s = Series(np.random.randn(10), index=index)
|
|
s = s.to_sparse()
|
|
|
|
result = s[:2].reindex(index, method='pad', limit=5)
|
|
expected = s[:2].reindex(index).fillna(method='pad')
|
|
expected = expected.to_dense()
|
|
expected[-3:] = np.nan
|
|
expected = expected.to_sparse()
|
|
assert_series_equal(result, expected)
|
|
|
|
result = s[-2:].reindex(index, method='backfill', limit=5)
|
|
expected = s[-2:].reindex(index).fillna(method='backfill')
|
|
expected = expected.to_dense()
|
|
expected[:3] = np.nan
|
|
expected = expected.to_sparse()
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_series_pad_backfill_limit(self):
|
|
index = np.arange(10)
|
|
s = Series(np.random.randn(10), index=index)
|
|
|
|
result = s[:2].reindex(index, method='pad', limit=5)
|
|
|
|
expected = s[:2].reindex(index).fillna(method='pad')
|
|
expected[-3:] = np.nan
|
|
assert_series_equal(result, expected)
|
|
|
|
result = s[-2:].reindex(index, method='backfill', limit=5)
|
|
|
|
expected = s[-2:].reindex(index).fillna(method='backfill')
|
|
expected[:3] = np.nan
|
|
assert_series_equal(result, expected)
|
|
|
|
|
|
class TestSeriesInterpolateData(TestData):
|
|
|
|
def test_interpolate(self):
|
|
ts = Series(np.arange(len(self.ts), dtype=float), self.ts.index)
|
|
|
|
ts_copy = ts.copy()
|
|
ts_copy[5:10] = np.NaN
|
|
|
|
linear_interp = ts_copy.interpolate(method='linear')
|
|
tm.assert_series_equal(linear_interp, ts)
|
|
|
|
ord_ts = Series([d.toordinal() for d in self.ts.index],
|
|
index=self.ts.index).astype(float)
|
|
|
|
ord_ts_copy = ord_ts.copy()
|
|
ord_ts_copy[5:10] = np.NaN
|
|
|
|
time_interp = ord_ts_copy.interpolate(method='time')
|
|
tm.assert_series_equal(time_interp, ord_ts)
|
|
|
|
# try time interpolation on a non-TimeSeries
|
|
# Only raises ValueError if there are NaNs.
|
|
non_ts = self.series.copy()
|
|
non_ts[0] = np.NaN
|
|
pytest.raises(ValueError, non_ts.interpolate, method='time')
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_interpolate_pchip(self):
|
|
_skip_if_no_pchip()
|
|
|
|
ser = Series(np.sort(np.random.uniform(size=100)))
|
|
|
|
# interpolate at new_index
|
|
new_index = ser.index.union(Index([49.25, 49.5, 49.75, 50.25, 50.5,
|
|
50.75]))
|
|
interp_s = ser.reindex(new_index).interpolate(method='pchip')
|
|
# does not blow up, GH5977
|
|
interp_s[49:51]
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_interpolate_akima(self):
|
|
_skip_if_no_akima()
|
|
|
|
ser = Series([10, 11, 12, 13])
|
|
|
|
expected = Series([11.00, 11.25, 11.50, 11.75,
|
|
12.00, 12.25, 12.50, 12.75, 13.00],
|
|
index=Index([1.0, 1.25, 1.5, 1.75,
|
|
2.0, 2.25, 2.5, 2.75, 3.0]))
|
|
# interpolate at new_index
|
|
new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75]))
|
|
interp_s = ser.reindex(new_index).interpolate(method='akima')
|
|
assert_series_equal(interp_s[1:3], expected)
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_interpolate_piecewise_polynomial(self):
|
|
ser = Series([10, 11, 12, 13])
|
|
|
|
expected = Series([11.00, 11.25, 11.50, 11.75,
|
|
12.00, 12.25, 12.50, 12.75, 13.00],
|
|
index=Index([1.0, 1.25, 1.5, 1.75,
|
|
2.0, 2.25, 2.5, 2.75, 3.0]))
|
|
# interpolate at new_index
|
|
new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75]))
|
|
interp_s = ser.reindex(new_index).interpolate(
|
|
method='piecewise_polynomial')
|
|
assert_series_equal(interp_s[1:3], expected)
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_interpolate_from_derivatives(self):
|
|
ser = Series([10, 11, 12, 13])
|
|
|
|
expected = Series([11.00, 11.25, 11.50, 11.75,
|
|
12.00, 12.25, 12.50, 12.75, 13.00],
|
|
index=Index([1.0, 1.25, 1.5, 1.75,
|
|
2.0, 2.25, 2.5, 2.75, 3.0]))
|
|
# interpolate at new_index
|
|
new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75]))
|
|
interp_s = ser.reindex(new_index).interpolate(
|
|
method='from_derivatives')
|
|
assert_series_equal(interp_s[1:3], expected)
|
|
|
|
@pytest.mark.parametrize("kwargs", [
|
|
{},
|
|
pytest.param({'method': 'polynomial', 'order': 1},
|
|
marks=td.skip_if_no_scipy)
|
|
])
|
|
def test_interpolate_corners(self, kwargs):
|
|
s = Series([np.nan, np.nan])
|
|
assert_series_equal(s.interpolate(**kwargs), s)
|
|
|
|
s = Series([]).interpolate()
|
|
assert_series_equal(s.interpolate(**kwargs), s)
|
|
|
|
def test_interpolate_index_values(self):
|
|
s = Series(np.nan, index=np.sort(np.random.rand(30)))
|
|
s[::3] = np.random.randn(10)
|
|
|
|
vals = s.index.values.astype(float)
|
|
|
|
result = s.interpolate(method='index')
|
|
|
|
expected = s.copy()
|
|
bad = isna(expected.values)
|
|
good = ~bad
|
|
expected = Series(np.interp(vals[bad], vals[good],
|
|
s.values[good]),
|
|
index=s.index[bad])
|
|
|
|
assert_series_equal(result[bad], expected)
|
|
|
|
# 'values' is synonymous with 'index' for the method kwarg
|
|
other_result = s.interpolate(method='values')
|
|
|
|
assert_series_equal(other_result, result)
|
|
assert_series_equal(other_result[bad], expected)
|
|
|
|
def test_interpolate_non_ts(self):
|
|
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
|
|
with pytest.raises(ValueError):
|
|
s.interpolate(method='time')
|
|
|
|
@pytest.mark.parametrize("kwargs", [
|
|
{},
|
|
pytest.param({'method': 'polynomial', 'order': 1},
|
|
marks=td.skip_if_no_scipy)
|
|
])
|
|
def test_nan_interpolate(self, kwargs):
|
|
s = Series([0, 1, np.nan, 3])
|
|
result = s.interpolate(**kwargs)
|
|
expected = Series([0., 1., 2., 3.])
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_nan_irregular_index(self):
|
|
s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9])
|
|
result = s.interpolate()
|
|
expected = Series([1., 2., 3., 4.], index=[1, 3, 5, 9])
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_nan_str_index(self):
|
|
s = Series([0, 1, 2, np.nan], index=list('abcd'))
|
|
result = s.interpolate()
|
|
expected = Series([0., 1., 2., 2.], index=list('abcd'))
|
|
assert_series_equal(result, expected)
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_interp_quad(self):
|
|
sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4])
|
|
result = sq.interpolate(method='quadratic')
|
|
expected = Series([1., 4., 9., 16.], index=[1, 2, 3, 4])
|
|
assert_series_equal(result, expected)
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_interp_scipy_basic(self):
|
|
s = Series([1, 3, np.nan, 12, np.nan, 25])
|
|
# slinear
|
|
expected = Series([1., 3., 7.5, 12., 18.5, 25.])
|
|
result = s.interpolate(method='slinear')
|
|
assert_series_equal(result, expected)
|
|
|
|
result = s.interpolate(method='slinear', downcast='infer')
|
|
assert_series_equal(result, expected)
|
|
# nearest
|
|
expected = Series([1, 3, 3, 12, 12, 25])
|
|
result = s.interpolate(method='nearest')
|
|
assert_series_equal(result, expected.astype('float'))
|
|
|
|
result = s.interpolate(method='nearest', downcast='infer')
|
|
assert_series_equal(result, expected)
|
|
# zero
|
|
expected = Series([1, 3, 3, 12, 12, 25])
|
|
result = s.interpolate(method='zero')
|
|
assert_series_equal(result, expected.astype('float'))
|
|
|
|
result = s.interpolate(method='zero', downcast='infer')
|
|
assert_series_equal(result, expected)
|
|
# quadratic
|
|
# GH #15662.
|
|
# new cubic and quadratic interpolation algorithms from scipy 0.19.0.
|
|
# previously `splmake` was used. See scipy/scipy#6710
|
|
if _is_scipy_ge_0190:
|
|
expected = Series([1, 3., 6.823529, 12., 18.058824, 25.])
|
|
else:
|
|
expected = Series([1, 3., 6.769231, 12., 18.230769, 25.])
|
|
result = s.interpolate(method='quadratic')
|
|
assert_series_equal(result, expected)
|
|
|
|
result = s.interpolate(method='quadratic', downcast='infer')
|
|
assert_series_equal(result, expected)
|
|
# cubic
|
|
expected = Series([1., 3., 6.8, 12., 18.2, 25.])
|
|
result = s.interpolate(method='cubic')
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_interp_limit(self):
|
|
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
|
|
|
|
expected = Series([1., 3., 5., 7., np.nan, 11.])
|
|
result = s.interpolate(method='linear', limit=2)
|
|
assert_series_equal(result, expected)
|
|
|
|
# GH 9217, make sure limit is an int and greater than 0
|
|
methods = ['linear', 'time', 'index', 'values', 'nearest', 'zero',
|
|
'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh',
|
|
'polynomial', 'spline', 'piecewise_polynomial', None,
|
|
'from_derivatives', 'pchip', 'akima']
|
|
s = pd.Series([1, 2, np.nan, np.nan, 5])
|
|
for limit in [-1, 0, 1., 2.]:
|
|
for method in methods:
|
|
with pytest.raises(ValueError):
|
|
s.interpolate(limit=limit, method=method)
|
|
|
|
def test_interp_limit_forward(self):
|
|
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
|
|
|
|
# Provide 'forward' (the default) explicitly here.
|
|
expected = Series([1., 3., 5., 7., np.nan, 11.])
|
|
|
|
result = s.interpolate(method='linear', limit=2,
|
|
limit_direction='forward')
|
|
assert_series_equal(result, expected)
|
|
|
|
result = s.interpolate(method='linear', limit=2,
|
|
limit_direction='FORWARD')
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_interp_unlimited(self):
|
|
# these test are for issue #16282 default Limit=None is unlimited
|
|
s = Series([np.nan, 1., 3., np.nan, np.nan, np.nan, 11., np.nan])
|
|
expected = Series([1., 1., 3., 5., 7., 9., 11., 11.])
|
|
result = s.interpolate(method='linear',
|
|
limit_direction='both')
|
|
assert_series_equal(result, expected)
|
|
|
|
expected = Series([np.nan, 1., 3., 5., 7., 9., 11., 11.])
|
|
result = s.interpolate(method='linear',
|
|
limit_direction='forward')
|
|
assert_series_equal(result, expected)
|
|
|
|
expected = Series([1., 1., 3., 5., 7., 9., 11., np.nan])
|
|
result = s.interpolate(method='linear',
|
|
limit_direction='backward')
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_interp_limit_bad_direction(self):
|
|
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
|
|
|
|
pytest.raises(ValueError, s.interpolate, method='linear', limit=2,
|
|
limit_direction='abc')
|
|
|
|
# raises an error even if no limit is specified.
|
|
pytest.raises(ValueError, s.interpolate, method='linear',
|
|
limit_direction='abc')
|
|
|
|
# limit_area introduced GH #16284
|
|
def test_interp_limit_area(self):
|
|
# These tests are for issue #9218 -- fill NaNs in both directions.
|
|
s = Series([nan, nan, 3, nan, nan, nan, 7, nan, nan])
|
|
|
|
expected = Series([nan, nan, 3., 4., 5., 6., 7., nan, nan])
|
|
result = s.interpolate(method='linear', limit_area='inside')
|
|
assert_series_equal(result, expected)
|
|
|
|
expected = Series([nan, nan, 3., 4., nan, nan, 7., nan, nan])
|
|
result = s.interpolate(method='linear', limit_area='inside',
|
|
limit=1)
|
|
|
|
expected = Series([nan, nan, 3., 4., nan, 6., 7., nan, nan])
|
|
result = s.interpolate(method='linear', limit_area='inside',
|
|
limit_direction='both', limit=1)
|
|
assert_series_equal(result, expected)
|
|
|
|
expected = Series([nan, nan, 3., nan, nan, nan, 7., 7., 7.])
|
|
result = s.interpolate(method='linear', limit_area='outside')
|
|
assert_series_equal(result, expected)
|
|
|
|
expected = Series([nan, nan, 3., nan, nan, nan, 7., 7., nan])
|
|
result = s.interpolate(method='linear', limit_area='outside',
|
|
limit=1)
|
|
|
|
expected = Series([nan, 3., 3., nan, nan, nan, 7., 7., nan])
|
|
result = s.interpolate(method='linear', limit_area='outside',
|
|
limit_direction='both', limit=1)
|
|
assert_series_equal(result, expected)
|
|
|
|
expected = Series([3., 3., 3., nan, nan, nan, 7., nan, nan])
|
|
result = s.interpolate(method='linear', limit_area='outside',
|
|
direction='backward')
|
|
|
|
# raises an error even if limit type is wrong.
|
|
pytest.raises(ValueError, s.interpolate, method='linear',
|
|
limit_area='abc')
|
|
|
|
def test_interp_limit_direction(self):
|
|
# These tests are for issue #9218 -- fill NaNs in both directions.
|
|
s = Series([1, 3, np.nan, np.nan, np.nan, 11])
|
|
|
|
expected = Series([1., 3., np.nan, 7., 9., 11.])
|
|
result = s.interpolate(method='linear', limit=2,
|
|
limit_direction='backward')
|
|
assert_series_equal(result, expected)
|
|
|
|
expected = Series([1., 3., 5., np.nan, 9., 11.])
|
|
result = s.interpolate(method='linear', limit=1,
|
|
limit_direction='both')
|
|
assert_series_equal(result, expected)
|
|
|
|
# Check that this works on a longer series of nans.
|
|
s = Series([1, 3, np.nan, np.nan, np.nan, 7, 9, np.nan, np.nan, 12,
|
|
np.nan])
|
|
|
|
expected = Series([1., 3., 4., 5., 6., 7., 9., 10., 11., 12., 12.])
|
|
result = s.interpolate(method='linear', limit=2,
|
|
limit_direction='both')
|
|
assert_series_equal(result, expected)
|
|
|
|
expected = Series([1., 3., 4., np.nan, 6., 7., 9., 10., 11., 12., 12.])
|
|
result = s.interpolate(method='linear', limit=1,
|
|
limit_direction='both')
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_interp_limit_to_ends(self):
|
|
# These test are for issue #10420 -- flow back to beginning.
|
|
s = Series([np.nan, np.nan, 5, 7, 9, np.nan])
|
|
|
|
expected = Series([5., 5., 5., 7., 9., np.nan])
|
|
result = s.interpolate(method='linear', limit=2,
|
|
limit_direction='backward')
|
|
assert_series_equal(result, expected)
|
|
|
|
expected = Series([5., 5., 5., 7., 9., 9.])
|
|
result = s.interpolate(method='linear', limit=2,
|
|
limit_direction='both')
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_interp_limit_before_ends(self):
|
|
# These test are for issue #11115 -- limit ends properly.
|
|
s = Series([np.nan, np.nan, 5, 7, np.nan, np.nan])
|
|
|
|
expected = Series([np.nan, np.nan, 5., 7., 7., np.nan])
|
|
result = s.interpolate(method='linear', limit=1,
|
|
limit_direction='forward')
|
|
assert_series_equal(result, expected)
|
|
|
|
expected = Series([np.nan, 5., 5., 7., np.nan, np.nan])
|
|
result = s.interpolate(method='linear', limit=1,
|
|
limit_direction='backward')
|
|
assert_series_equal(result, expected)
|
|
|
|
expected = Series([np.nan, 5., 5., 7., 7., np.nan])
|
|
result = s.interpolate(method='linear', limit=1,
|
|
limit_direction='both')
|
|
assert_series_equal(result, expected)
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_interp_all_good(self):
|
|
s = Series([1, 2, 3])
|
|
result = s.interpolate(method='polynomial', order=1)
|
|
assert_series_equal(result, s)
|
|
|
|
# non-scipy
|
|
result = s.interpolate()
|
|
assert_series_equal(result, s)
|
|
|
|
@pytest.mark.parametrize("check_scipy", [
|
|
False,
|
|
pytest.param(True, marks=td.skip_if_no_scipy)
|
|
])
|
|
def test_interp_multiIndex(self, check_scipy):
|
|
idx = MultiIndex.from_tuples([(0, 'a'), (1, 'b'), (2, 'c')])
|
|
s = Series([1, 2, np.nan], index=idx)
|
|
|
|
expected = s.copy()
|
|
expected.loc[2] = 2
|
|
result = s.interpolate()
|
|
assert_series_equal(result, expected)
|
|
|
|
if check_scipy:
|
|
with pytest.raises(ValueError):
|
|
s.interpolate(method='polynomial', order=1)
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_interp_nonmono_raise(self):
|
|
s = Series([1, np.nan, 3], index=[0, 2, 1])
|
|
with pytest.raises(ValueError):
|
|
s.interpolate(method='krogh')
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_interp_datetime64(self):
|
|
df = Series([1, np.nan, 3], index=date_range('1/1/2000', periods=3))
|
|
result = df.interpolate(method='nearest')
|
|
expected = Series([1., 1., 3.],
|
|
index=date_range('1/1/2000', periods=3))
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_interp_limit_no_nans(self):
|
|
# GH 7173
|
|
s = pd.Series([1., 2., 3.])
|
|
result = s.interpolate(limit=1)
|
|
expected = s
|
|
assert_series_equal(result, expected)
|
|
|
|
@td.skip_if_no_scipy
|
|
@pytest.mark.parametrize("method", ['polynomial', 'spline'])
|
|
def test_no_order(self, method):
|
|
s = Series([0, 1, np.nan, 3])
|
|
with pytest.raises(ValueError):
|
|
s.interpolate(method=method)
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_spline(self):
|
|
s = Series([1, 2, np.nan, 4, 5, np.nan, 7])
|
|
result = s.interpolate(method='spline', order=1)
|
|
expected = Series([1., 2., 3., 4., 5., 6., 7.])
|
|
assert_series_equal(result, expected)
|
|
|
|
@td.skip_if_no('scipy', min_version='0.15')
|
|
def test_spline_extrapolate(self):
|
|
s = Series([1, 2, 3, 4, np.nan, 6, np.nan])
|
|
result3 = s.interpolate(method='spline', order=1, ext=3)
|
|
expected3 = Series([1., 2., 3., 4., 5., 6., 6.])
|
|
assert_series_equal(result3, expected3)
|
|
|
|
result1 = s.interpolate(method='spline', order=1, ext=0)
|
|
expected1 = Series([1., 2., 3., 4., 5., 6., 7.])
|
|
assert_series_equal(result1, expected1)
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_spline_smooth(self):
|
|
s = Series([1, 2, np.nan, 4, 5.1, np.nan, 7])
|
|
assert (s.interpolate(method='spline', order=3, s=0)[5] !=
|
|
s.interpolate(method='spline', order=3)[5])
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_spline_interpolation(self):
|
|
s = Series(np.arange(10) ** 2)
|
|
s[np.random.randint(0, 9, 3)] = np.nan
|
|
result1 = s.interpolate(method='spline', order=1)
|
|
expected1 = s.interpolate(method='spline', order=1)
|
|
assert_series_equal(result1, expected1)
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_spline_error(self):
|
|
# see gh-10633
|
|
s = pd.Series(np.arange(10) ** 2)
|
|
s[np.random.randint(0, 9, 3)] = np.nan
|
|
with pytest.raises(ValueError):
|
|
s.interpolate(method='spline')
|
|
|
|
with pytest.raises(ValueError):
|
|
s.interpolate(method='spline', order=0)
|
|
|
|
def test_interp_timedelta64(self):
|
|
# GH 6424
|
|
df = Series([1, np.nan, 3],
|
|
index=pd.to_timedelta([1, 2, 3]))
|
|
result = df.interpolate(method='time')
|
|
expected = Series([1., 2., 3.],
|
|
index=pd.to_timedelta([1, 2, 3]))
|
|
assert_series_equal(result, expected)
|
|
|
|
# test for non uniform spacing
|
|
df = Series([1, np.nan, 3],
|
|
index=pd.to_timedelta([1, 2, 4]))
|
|
result = df.interpolate(method='time')
|
|
expected = Series([1., 1.666667, 3.],
|
|
index=pd.to_timedelta([1, 2, 4]))
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_series_interpolate_method_values(self):
|
|
# #1646
|
|
ts = _simple_ts('1/1/2000', '1/20/2000')
|
|
ts[::2] = np.nan
|
|
|
|
result = ts.interpolate(method='values')
|
|
exp = ts.interpolate()
|
|
assert_series_equal(result, exp)
|
|
|
|
def test_series_interpolate_intraday(self):
|
|
# #1698
|
|
index = pd.date_range('1/1/2012', periods=4, freq='12D')
|
|
ts = pd.Series([0, 12, 24, 36], index)
|
|
new_index = index.append(index + pd.DateOffset(days=1)).sort_values()
|
|
|
|
exp = ts.reindex(new_index).interpolate(method='time')
|
|
|
|
index = pd.date_range('1/1/2012', periods=4, freq='12H')
|
|
ts = pd.Series([0, 12, 24, 36], index)
|
|
new_index = index.append(index + pd.DateOffset(hours=1)).sort_values()
|
|
result = ts.reindex(new_index).interpolate(method='time')
|
|
|
|
tm.assert_numpy_array_equal(result.values, exp.values)
|