laywerrobot/lib/python3.6/site-packages/pandas/tests/series/test_alter_axes.py
2020-08-27 21:55:39 +02:00

297 lines
10 KiB
Python

# coding=utf-8
# pylint: disable-msg=E1101,W0612
import pytest
from datetime import datetime
import numpy as np
import pandas as pd
from pandas import Index, Series
from pandas.core.index import MultiIndex, RangeIndex
from pandas.compat import lrange, range, zip
from pandas.util.testing import assert_series_equal, assert_frame_equal
import pandas.util.testing as tm
from .common import TestData
class TestSeriesAlterAxes(TestData):
def test_setindex(self):
# wrong type
series = self.series.copy()
pytest.raises(TypeError, setattr, series, 'index', None)
# wrong length
series = self.series.copy()
pytest.raises(Exception, setattr, series, 'index',
np.arange(len(series) - 1))
# works
series = self.series.copy()
series.index = np.arange(len(series))
assert isinstance(series.index, Index)
def test_rename(self):
renamer = lambda x: x.strftime('%Y%m%d')
renamed = self.ts.rename(renamer)
assert renamed.index[0] == renamer(self.ts.index[0])
# dict
rename_dict = dict(zip(self.ts.index, renamed.index))
renamed2 = self.ts.rename(rename_dict)
assert_series_equal(renamed, renamed2)
# partial dict
s = Series(np.arange(4), index=['a', 'b', 'c', 'd'], dtype='int64')
renamed = s.rename({'b': 'foo', 'd': 'bar'})
tm.assert_index_equal(renamed.index, Index(['a', 'foo', 'c', 'bar']))
# index with name
renamer = Series(np.arange(4),
index=Index(['a', 'b', 'c', 'd'], name='name'),
dtype='int64')
renamed = renamer.rename({})
assert renamed.index.name == renamer.index.name
def test_rename_by_series(self):
s = Series(range(5), name='foo')
renamer = Series({1: 10, 2: 20})
result = s.rename(renamer)
expected = Series(range(5), index=[0, 10, 20, 3, 4], name='foo')
tm.assert_series_equal(result, expected)
def test_rename_set_name(self):
s = Series(range(4), index=list('abcd'))
for name in ['foo', 123, 123., datetime(2001, 11, 11), ('foo',)]:
result = s.rename(name)
assert result.name == name
tm.assert_numpy_array_equal(result.index.values, s.index.values)
assert s.name is None
def test_rename_set_name_inplace(self):
s = Series(range(3), index=list('abc'))
for name in ['foo', 123, 123., datetime(2001, 11, 11), ('foo',)]:
s.rename(name, inplace=True)
assert s.name == name
exp = np.array(['a', 'b', 'c'], dtype=np.object_)
tm.assert_numpy_array_equal(s.index.values, exp)
def test_rename_axis_supported(self):
# Supporting axis for compatibility, detailed in GH-18589
s = Series(range(5))
s.rename({}, axis=0)
s.rename({}, axis='index')
with tm.assert_raises_regex(ValueError, 'No axis named 5'):
s.rename({}, axis=5)
def test_set_name_attribute(self):
s = Series([1, 2, 3])
s2 = Series([1, 2, 3], name='bar')
for name in [7, 7., 'name', datetime(2001, 1, 1), (1,), u"\u05D0"]:
s.name = name
assert s.name == name
s2.name = name
assert s2.name == name
def test_set_name(self):
s = Series([1, 2, 3])
s2 = s._set_name('foo')
assert s2.name == 'foo'
assert s.name is None
assert s is not s2
def test_rename_inplace(self):
renamer = lambda x: x.strftime('%Y%m%d')
expected = renamer(self.ts.index[0])
self.ts.rename(renamer, inplace=True)
assert self.ts.index[0] == expected
def test_set_index_makes_timeseries(self):
idx = tm.makeDateIndex(10)
s = Series(lrange(10))
s.index = idx
assert s.index.is_all_dates
def test_reset_index(self):
df = tm.makeDataFrame()[:5]
ser = df.stack()
ser.index.names = ['hash', 'category']
ser.name = 'value'
df = ser.reset_index()
assert 'value' in df
df = ser.reset_index(name='value2')
assert 'value2' in df
# check inplace
s = ser.reset_index(drop=True)
s2 = ser
s2.reset_index(drop=True, inplace=True)
assert_series_equal(s, s2)
# level
index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]],
labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2],
[0, 1, 0, 1, 0, 1]])
s = Series(np.random.randn(6), index=index)
rs = s.reset_index(level=1)
assert len(rs.columns) == 2
rs = s.reset_index(level=[0, 2], drop=True)
tm.assert_index_equal(rs.index, Index(index.get_level_values(1)))
assert isinstance(rs, Series)
def test_reset_index_level(self):
df = pd.DataFrame([[1, 2, 3], [4, 5, 6]],
columns=['A', 'B', 'C'])
for levels in ['A', 'B'], [0, 1]:
# With MultiIndex
s = df.set_index(['A', 'B'])['C']
result = s.reset_index(level=levels[0])
tm.assert_frame_equal(result, df.set_index('B'))
result = s.reset_index(level=levels[:1])
tm.assert_frame_equal(result, df.set_index('B'))
result = s.reset_index(level=levels)
tm.assert_frame_equal(result, df)
result = df.set_index(['A', 'B']).reset_index(level=levels,
drop=True)
tm.assert_frame_equal(result, df[['C']])
with tm.assert_raises_regex(KeyError, 'Level E '):
s.reset_index(level=['A', 'E'])
# With single-level Index
s = df.set_index('A')['B']
result = s.reset_index(level=levels[0])
tm.assert_frame_equal(result, df[['A', 'B']])
result = s.reset_index(level=levels[:1])
tm.assert_frame_equal(result, df[['A', 'B']])
result = s.reset_index(level=levels[0], drop=True)
tm.assert_series_equal(result, df['B'])
with tm.assert_raises_regex(IndexError, 'Too many levels'):
s.reset_index(level=[0, 1, 2])
# Check that .reset_index([],drop=True) doesn't fail
result = pd.Series(range(4)).reset_index([], drop=True)
expected = pd.Series(range(4))
assert_series_equal(result, expected)
def test_reset_index_range(self):
# GH 12071
s = pd.Series(range(2), name='A', dtype='int64')
series_result = s.reset_index()
assert isinstance(series_result.index, RangeIndex)
series_expected = pd.DataFrame([[0, 0], [1, 1]],
columns=['index', 'A'],
index=RangeIndex(stop=2))
assert_frame_equal(series_result, series_expected)
def test_reorder_levels(self):
index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]],
labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2],
[0, 1, 0, 1, 0, 1]],
names=['L0', 'L1', 'L2'])
s = Series(np.arange(6), index=index)
# no change, position
result = s.reorder_levels([0, 1, 2])
assert_series_equal(s, result)
# no change, labels
result = s.reorder_levels(['L0', 'L1', 'L2'])
assert_series_equal(s, result)
# rotate, position
result = s.reorder_levels([1, 2, 0])
e_idx = MultiIndex(levels=[['one', 'two', 'three'], [0, 1], ['bar']],
labels=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1],
[0, 0, 0, 0, 0, 0]],
names=['L1', 'L2', 'L0'])
expected = Series(np.arange(6), index=e_idx)
assert_series_equal(result, expected)
def test_rename_axis_inplace(self):
# GH 15704
series = self.ts.copy()
expected = series.rename_axis('foo')
result = series.copy()
no_return = result.rename_axis('foo', inplace=True)
assert no_return is None
assert_series_equal(result, expected)
def test_set_axis_inplace(self):
# GH14636
s = Series(np.arange(4), index=[1, 3, 5, 7], dtype='int64')
expected = s.copy()
expected.index = list('abcd')
for axis in 0, 'index':
# inplace=True
# The FutureWarning comes from the fact that we would like to have
# inplace default to False some day
for inplace, warn in (None, FutureWarning), (True, None):
result = s.copy()
kwargs = {'inplace': inplace}
with tm.assert_produces_warning(warn):
result.set_axis(list('abcd'), axis=axis, **kwargs)
tm.assert_series_equal(result, expected)
# inplace=False
result = s.set_axis(list('abcd'), axis=0, inplace=False)
tm.assert_series_equal(expected, result)
# omitting the "axis" parameter
with tm.assert_produces_warning(None):
result = s.set_axis(list('abcd'), inplace=False)
tm.assert_series_equal(result, expected)
# wrong values for the "axis" parameter
for axis in 2, 'foo':
with tm.assert_raises_regex(ValueError, 'No axis named'):
s.set_axis(list('abcd'), axis=axis, inplace=False)
def test_set_axis_prior_to_deprecation_signature(self):
s = Series(np.arange(4), index=[1, 3, 5, 7], dtype='int64')
expected = s.copy()
expected.index = list('abcd')
for axis in 0, 'index':
with tm.assert_produces_warning(FutureWarning):
result = s.set_axis(0, list('abcd'), inplace=False)
tm.assert_series_equal(result, expected)
def test_reset_index_drop_errors(self):
# GH 20925
# KeyError raised for series index when passed level name is missing
s = pd.Series(range(4))
with tm.assert_raises_regex(KeyError, 'must be same as name'):
s.reset_index('wrong', drop=True)
with tm.assert_raises_regex(KeyError, 'must be same as name'):
s.reset_index('wrong')
# KeyError raised for series when level to be dropped is missing
s = pd.Series(range(4), index=pd.MultiIndex.from_product([[1, 2]] * 2))
with tm.assert_raises_regex(KeyError, 'not found'):
s.reset_index('wrong', drop=True)