297 lines
10 KiB
Python
297 lines
10 KiB
Python
# coding=utf-8
|
|
# pylint: disable-msg=E1101,W0612
|
|
|
|
import pytest
|
|
|
|
from datetime import datetime
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from pandas import Index, Series
|
|
from pandas.core.index import MultiIndex, RangeIndex
|
|
|
|
from pandas.compat import lrange, range, zip
|
|
from pandas.util.testing import assert_series_equal, assert_frame_equal
|
|
import pandas.util.testing as tm
|
|
|
|
from .common import TestData
|
|
|
|
|
|
class TestSeriesAlterAxes(TestData):
|
|
|
|
def test_setindex(self):
|
|
# wrong type
|
|
series = self.series.copy()
|
|
pytest.raises(TypeError, setattr, series, 'index', None)
|
|
|
|
# wrong length
|
|
series = self.series.copy()
|
|
pytest.raises(Exception, setattr, series, 'index',
|
|
np.arange(len(series) - 1))
|
|
|
|
# works
|
|
series = self.series.copy()
|
|
series.index = np.arange(len(series))
|
|
assert isinstance(series.index, Index)
|
|
|
|
def test_rename(self):
|
|
renamer = lambda x: x.strftime('%Y%m%d')
|
|
renamed = self.ts.rename(renamer)
|
|
assert renamed.index[0] == renamer(self.ts.index[0])
|
|
|
|
# dict
|
|
rename_dict = dict(zip(self.ts.index, renamed.index))
|
|
renamed2 = self.ts.rename(rename_dict)
|
|
assert_series_equal(renamed, renamed2)
|
|
|
|
# partial dict
|
|
s = Series(np.arange(4), index=['a', 'b', 'c', 'd'], dtype='int64')
|
|
renamed = s.rename({'b': 'foo', 'd': 'bar'})
|
|
tm.assert_index_equal(renamed.index, Index(['a', 'foo', 'c', 'bar']))
|
|
|
|
# index with name
|
|
renamer = Series(np.arange(4),
|
|
index=Index(['a', 'b', 'c', 'd'], name='name'),
|
|
dtype='int64')
|
|
renamed = renamer.rename({})
|
|
assert renamed.index.name == renamer.index.name
|
|
|
|
def test_rename_by_series(self):
|
|
s = Series(range(5), name='foo')
|
|
renamer = Series({1: 10, 2: 20})
|
|
result = s.rename(renamer)
|
|
expected = Series(range(5), index=[0, 10, 20, 3, 4], name='foo')
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_rename_set_name(self):
|
|
s = Series(range(4), index=list('abcd'))
|
|
for name in ['foo', 123, 123., datetime(2001, 11, 11), ('foo',)]:
|
|
result = s.rename(name)
|
|
assert result.name == name
|
|
tm.assert_numpy_array_equal(result.index.values, s.index.values)
|
|
assert s.name is None
|
|
|
|
def test_rename_set_name_inplace(self):
|
|
s = Series(range(3), index=list('abc'))
|
|
for name in ['foo', 123, 123., datetime(2001, 11, 11), ('foo',)]:
|
|
s.rename(name, inplace=True)
|
|
assert s.name == name
|
|
|
|
exp = np.array(['a', 'b', 'c'], dtype=np.object_)
|
|
tm.assert_numpy_array_equal(s.index.values, exp)
|
|
|
|
def test_rename_axis_supported(self):
|
|
# Supporting axis for compatibility, detailed in GH-18589
|
|
s = Series(range(5))
|
|
s.rename({}, axis=0)
|
|
s.rename({}, axis='index')
|
|
with tm.assert_raises_regex(ValueError, 'No axis named 5'):
|
|
s.rename({}, axis=5)
|
|
|
|
def test_set_name_attribute(self):
|
|
s = Series([1, 2, 3])
|
|
s2 = Series([1, 2, 3], name='bar')
|
|
for name in [7, 7., 'name', datetime(2001, 1, 1), (1,), u"\u05D0"]:
|
|
s.name = name
|
|
assert s.name == name
|
|
s2.name = name
|
|
assert s2.name == name
|
|
|
|
def test_set_name(self):
|
|
s = Series([1, 2, 3])
|
|
s2 = s._set_name('foo')
|
|
assert s2.name == 'foo'
|
|
assert s.name is None
|
|
assert s is not s2
|
|
|
|
def test_rename_inplace(self):
|
|
renamer = lambda x: x.strftime('%Y%m%d')
|
|
expected = renamer(self.ts.index[0])
|
|
|
|
self.ts.rename(renamer, inplace=True)
|
|
assert self.ts.index[0] == expected
|
|
|
|
def test_set_index_makes_timeseries(self):
|
|
idx = tm.makeDateIndex(10)
|
|
|
|
s = Series(lrange(10))
|
|
s.index = idx
|
|
assert s.index.is_all_dates
|
|
|
|
def test_reset_index(self):
|
|
df = tm.makeDataFrame()[:5]
|
|
ser = df.stack()
|
|
ser.index.names = ['hash', 'category']
|
|
|
|
ser.name = 'value'
|
|
df = ser.reset_index()
|
|
assert 'value' in df
|
|
|
|
df = ser.reset_index(name='value2')
|
|
assert 'value2' in df
|
|
|
|
# check inplace
|
|
s = ser.reset_index(drop=True)
|
|
s2 = ser
|
|
s2.reset_index(drop=True, inplace=True)
|
|
assert_series_equal(s, s2)
|
|
|
|
# level
|
|
index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]],
|
|
labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2],
|
|
[0, 1, 0, 1, 0, 1]])
|
|
s = Series(np.random.randn(6), index=index)
|
|
rs = s.reset_index(level=1)
|
|
assert len(rs.columns) == 2
|
|
|
|
rs = s.reset_index(level=[0, 2], drop=True)
|
|
tm.assert_index_equal(rs.index, Index(index.get_level_values(1)))
|
|
assert isinstance(rs, Series)
|
|
|
|
def test_reset_index_level(self):
|
|
df = pd.DataFrame([[1, 2, 3], [4, 5, 6]],
|
|
columns=['A', 'B', 'C'])
|
|
|
|
for levels in ['A', 'B'], [0, 1]:
|
|
# With MultiIndex
|
|
s = df.set_index(['A', 'B'])['C']
|
|
|
|
result = s.reset_index(level=levels[0])
|
|
tm.assert_frame_equal(result, df.set_index('B'))
|
|
|
|
result = s.reset_index(level=levels[:1])
|
|
tm.assert_frame_equal(result, df.set_index('B'))
|
|
|
|
result = s.reset_index(level=levels)
|
|
tm.assert_frame_equal(result, df)
|
|
|
|
result = df.set_index(['A', 'B']).reset_index(level=levels,
|
|
drop=True)
|
|
tm.assert_frame_equal(result, df[['C']])
|
|
|
|
with tm.assert_raises_regex(KeyError, 'Level E '):
|
|
s.reset_index(level=['A', 'E'])
|
|
|
|
# With single-level Index
|
|
s = df.set_index('A')['B']
|
|
|
|
result = s.reset_index(level=levels[0])
|
|
tm.assert_frame_equal(result, df[['A', 'B']])
|
|
|
|
result = s.reset_index(level=levels[:1])
|
|
tm.assert_frame_equal(result, df[['A', 'B']])
|
|
|
|
result = s.reset_index(level=levels[0], drop=True)
|
|
tm.assert_series_equal(result, df['B'])
|
|
|
|
with tm.assert_raises_regex(IndexError, 'Too many levels'):
|
|
s.reset_index(level=[0, 1, 2])
|
|
|
|
# Check that .reset_index([],drop=True) doesn't fail
|
|
result = pd.Series(range(4)).reset_index([], drop=True)
|
|
expected = pd.Series(range(4))
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_reset_index_range(self):
|
|
# GH 12071
|
|
s = pd.Series(range(2), name='A', dtype='int64')
|
|
series_result = s.reset_index()
|
|
assert isinstance(series_result.index, RangeIndex)
|
|
series_expected = pd.DataFrame([[0, 0], [1, 1]],
|
|
columns=['index', 'A'],
|
|
index=RangeIndex(stop=2))
|
|
assert_frame_equal(series_result, series_expected)
|
|
|
|
def test_reorder_levels(self):
|
|
index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]],
|
|
labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2],
|
|
[0, 1, 0, 1, 0, 1]],
|
|
names=['L0', 'L1', 'L2'])
|
|
s = Series(np.arange(6), index=index)
|
|
|
|
# no change, position
|
|
result = s.reorder_levels([0, 1, 2])
|
|
assert_series_equal(s, result)
|
|
|
|
# no change, labels
|
|
result = s.reorder_levels(['L0', 'L1', 'L2'])
|
|
assert_series_equal(s, result)
|
|
|
|
# rotate, position
|
|
result = s.reorder_levels([1, 2, 0])
|
|
e_idx = MultiIndex(levels=[['one', 'two', 'three'], [0, 1], ['bar']],
|
|
labels=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1],
|
|
[0, 0, 0, 0, 0, 0]],
|
|
names=['L1', 'L2', 'L0'])
|
|
expected = Series(np.arange(6), index=e_idx)
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_rename_axis_inplace(self):
|
|
# GH 15704
|
|
series = self.ts.copy()
|
|
expected = series.rename_axis('foo')
|
|
result = series.copy()
|
|
no_return = result.rename_axis('foo', inplace=True)
|
|
|
|
assert no_return is None
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_set_axis_inplace(self):
|
|
# GH14636
|
|
|
|
s = Series(np.arange(4), index=[1, 3, 5, 7], dtype='int64')
|
|
|
|
expected = s.copy()
|
|
expected.index = list('abcd')
|
|
|
|
for axis in 0, 'index':
|
|
# inplace=True
|
|
# The FutureWarning comes from the fact that we would like to have
|
|
# inplace default to False some day
|
|
for inplace, warn in (None, FutureWarning), (True, None):
|
|
result = s.copy()
|
|
kwargs = {'inplace': inplace}
|
|
with tm.assert_produces_warning(warn):
|
|
result.set_axis(list('abcd'), axis=axis, **kwargs)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# inplace=False
|
|
result = s.set_axis(list('abcd'), axis=0, inplace=False)
|
|
tm.assert_series_equal(expected, result)
|
|
|
|
# omitting the "axis" parameter
|
|
with tm.assert_produces_warning(None):
|
|
result = s.set_axis(list('abcd'), inplace=False)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# wrong values for the "axis" parameter
|
|
for axis in 2, 'foo':
|
|
with tm.assert_raises_regex(ValueError, 'No axis named'):
|
|
s.set_axis(list('abcd'), axis=axis, inplace=False)
|
|
|
|
def test_set_axis_prior_to_deprecation_signature(self):
|
|
s = Series(np.arange(4), index=[1, 3, 5, 7], dtype='int64')
|
|
|
|
expected = s.copy()
|
|
expected.index = list('abcd')
|
|
|
|
for axis in 0, 'index':
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
result = s.set_axis(0, list('abcd'), inplace=False)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_reset_index_drop_errors(self):
|
|
# GH 20925
|
|
|
|
# KeyError raised for series index when passed level name is missing
|
|
s = pd.Series(range(4))
|
|
with tm.assert_raises_regex(KeyError, 'must be same as name'):
|
|
s.reset_index('wrong', drop=True)
|
|
with tm.assert_raises_regex(KeyError, 'must be same as name'):
|
|
s.reset_index('wrong')
|
|
|
|
# KeyError raised for series when level to be dropped is missing
|
|
s = pd.Series(range(4), index=pd.MultiIndex.from_product([[1, 2]] * 2))
|
|
with tm.assert_raises_regex(KeyError, 'not found'):
|
|
s.reset_index('wrong', drop=True)
|