709 lines
20 KiB
Python
709 lines
20 KiB
Python
# coding=utf-8
|
|
# pylint: disable-msg=E1101,W0612
|
|
|
|
import pytest
|
|
|
|
from datetime import datetime, timedelta
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from pandas import (Series, DataFrame,
|
|
date_range, Timestamp, DatetimeIndex, NaT)
|
|
|
|
from pandas.compat import lrange, range
|
|
from pandas.util.testing import (assert_series_equal,
|
|
assert_frame_equal, assert_almost_equal)
|
|
|
|
import pandas.util.testing as tm
|
|
|
|
import pandas._libs.index as _index
|
|
from pandas._libs import tslib
|
|
|
|
|
|
"""
|
|
Also test support for datetime64[ns] in Series / DataFrame
|
|
"""
|
|
|
|
|
|
def test_fancy_getitem():
|
|
dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1),
|
|
end=datetime(2010, 1, 1))
|
|
|
|
s = Series(np.arange(len(dti)), index=dti)
|
|
|
|
assert s[48] == 48
|
|
assert s['1/2/2009'] == 48
|
|
assert s['2009-1-2'] == 48
|
|
assert s[datetime(2009, 1, 2)] == 48
|
|
assert s[Timestamp(datetime(2009, 1, 2))] == 48
|
|
pytest.raises(KeyError, s.__getitem__, '2009-1-3')
|
|
|
|
assert_series_equal(s['3/6/2009':'2009-06-05'],
|
|
s[datetime(2009, 3, 6):datetime(2009, 6, 5)])
|
|
|
|
|
|
def test_fancy_setitem():
|
|
dti = DatetimeIndex(freq='WOM-1FRI', start=datetime(2005, 1, 1),
|
|
end=datetime(2010, 1, 1))
|
|
|
|
s = Series(np.arange(len(dti)), index=dti)
|
|
s[48] = -1
|
|
assert s[48] == -1
|
|
s['1/2/2009'] = -2
|
|
assert s[48] == -2
|
|
s['1/2/2009':'2009-06-05'] = -3
|
|
assert (s[48:54] == -3).all()
|
|
|
|
|
|
def test_dti_snap():
|
|
dti = DatetimeIndex(['1/1/2002', '1/2/2002', '1/3/2002', '1/4/2002',
|
|
'1/5/2002', '1/6/2002', '1/7/2002'], freq='D')
|
|
|
|
res = dti.snap(freq='W-MON')
|
|
exp = date_range('12/31/2001', '1/7/2002', freq='w-mon')
|
|
exp = exp.repeat([3, 4])
|
|
assert (res == exp).all()
|
|
|
|
res = dti.snap(freq='B')
|
|
|
|
exp = date_range('1/1/2002', '1/7/2002', freq='b')
|
|
exp = exp.repeat([1, 1, 1, 2, 2])
|
|
assert (res == exp).all()
|
|
|
|
|
|
def test_dti_reset_index_round_trip():
|
|
dti = DatetimeIndex(start='1/1/2001', end='6/1/2001', freq='D')
|
|
d1 = DataFrame({'v': np.random.rand(len(dti))}, index=dti)
|
|
d2 = d1.reset_index()
|
|
assert d2.dtypes[0] == np.dtype('M8[ns]')
|
|
d3 = d2.set_index('index')
|
|
assert_frame_equal(d1, d3, check_names=False)
|
|
|
|
# #2329
|
|
stamp = datetime(2012, 11, 22)
|
|
df = DataFrame([[stamp, 12.1]], columns=['Date', 'Value'])
|
|
df = df.set_index('Date')
|
|
|
|
assert df.index[0] == stamp
|
|
assert df.reset_index()['Date'][0] == stamp
|
|
|
|
|
|
def test_series_set_value():
|
|
# #1561
|
|
|
|
dates = [datetime(2001, 1, 1), datetime(2001, 1, 2)]
|
|
index = DatetimeIndex(dates)
|
|
|
|
with tm.assert_produces_warning(FutureWarning,
|
|
check_stacklevel=False):
|
|
s = Series().set_value(dates[0], 1.)
|
|
with tm.assert_produces_warning(FutureWarning,
|
|
check_stacklevel=False):
|
|
s2 = s.set_value(dates[1], np.nan)
|
|
|
|
exp = Series([1., np.nan], index=index)
|
|
|
|
assert_series_equal(s2, exp)
|
|
|
|
# s = Series(index[:1], index[:1])
|
|
# s2 = s.set_value(dates[1], index[1])
|
|
# assert s2.values.dtype == 'M8[ns]'
|
|
|
|
|
|
@pytest.mark.slow
|
|
def test_slice_locs_indexerror():
|
|
times = [datetime(2000, 1, 1) + timedelta(minutes=i * 10)
|
|
for i in range(100000)]
|
|
s = Series(lrange(100000), times)
|
|
s.loc[datetime(1900, 1, 1):datetime(2100, 1, 1)]
|
|
|
|
|
|
def test_slicing_datetimes():
|
|
# GH 7523
|
|
|
|
# unique
|
|
df = DataFrame(np.arange(4., dtype='float64'),
|
|
index=[datetime(2001, 1, i, 10, 00)
|
|
for i in [1, 2, 3, 4]])
|
|
result = df.loc[datetime(2001, 1, 1, 10):]
|
|
assert_frame_equal(result, df)
|
|
result = df.loc[:datetime(2001, 1, 4, 10)]
|
|
assert_frame_equal(result, df)
|
|
result = df.loc[datetime(2001, 1, 1, 10):datetime(2001, 1, 4, 10)]
|
|
assert_frame_equal(result, df)
|
|
|
|
result = df.loc[datetime(2001, 1, 1, 11):]
|
|
expected = df.iloc[1:]
|
|
assert_frame_equal(result, expected)
|
|
result = df.loc['20010101 11':]
|
|
assert_frame_equal(result, expected)
|
|
|
|
# duplicates
|
|
df = pd.DataFrame(np.arange(5., dtype='float64'),
|
|
index=[datetime(2001, 1, i, 10, 00)
|
|
for i in [1, 2, 2, 3, 4]])
|
|
|
|
result = df.loc[datetime(2001, 1, 1, 10):]
|
|
assert_frame_equal(result, df)
|
|
result = df.loc[:datetime(2001, 1, 4, 10)]
|
|
assert_frame_equal(result, df)
|
|
result = df.loc[datetime(2001, 1, 1, 10):datetime(2001, 1, 4, 10)]
|
|
assert_frame_equal(result, df)
|
|
|
|
result = df.loc[datetime(2001, 1, 1, 11):]
|
|
expected = df.iloc[1:]
|
|
assert_frame_equal(result, expected)
|
|
result = df.loc['20010101 11':]
|
|
assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_frame_datetime64_duplicated():
|
|
dates = date_range('2010-07-01', end='2010-08-05')
|
|
|
|
tst = DataFrame({'symbol': 'AAA', 'date': dates})
|
|
result = tst.duplicated(['date', 'symbol'])
|
|
assert (-result).all()
|
|
|
|
tst = DataFrame({'date': dates})
|
|
result = tst.duplicated()
|
|
assert (-result).all()
|
|
|
|
|
|
def test_getitem_setitem_datetime_tz_pytz():
|
|
from pytz import timezone as tz
|
|
from pandas import date_range
|
|
|
|
N = 50
|
|
# testing with timezone, GH #2785
|
|
rng = date_range('1/1/1990', periods=N, freq='H', tz='US/Eastern')
|
|
ts = Series(np.random.randn(N), index=rng)
|
|
|
|
# also test Timestamp tz handling, GH #2789
|
|
result = ts.copy()
|
|
result["1990-01-01 09:00:00+00:00"] = 0
|
|
result["1990-01-01 09:00:00+00:00"] = ts[4]
|
|
assert_series_equal(result, ts)
|
|
|
|
result = ts.copy()
|
|
result["1990-01-01 03:00:00-06:00"] = 0
|
|
result["1990-01-01 03:00:00-06:00"] = ts[4]
|
|
assert_series_equal(result, ts)
|
|
|
|
# repeat with datetimes
|
|
result = ts.copy()
|
|
result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = 0
|
|
result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = ts[4]
|
|
assert_series_equal(result, ts)
|
|
|
|
result = ts.copy()
|
|
|
|
# comparison dates with datetime MUST be localized!
|
|
date = tz('US/Central').localize(datetime(1990, 1, 1, 3))
|
|
result[date] = 0
|
|
result[date] = ts[4]
|
|
assert_series_equal(result, ts)
|
|
|
|
|
|
def test_getitem_setitem_datetime_tz_dateutil():
|
|
from dateutil.tz import tzutc
|
|
from pandas._libs.tslibs.timezones import dateutil_gettz as gettz
|
|
|
|
tz = lambda x: tzutc() if x == 'UTC' else gettz(
|
|
x) # handle special case for utc in dateutil
|
|
|
|
from pandas import date_range
|
|
|
|
N = 50
|
|
|
|
# testing with timezone, GH #2785
|
|
rng = date_range('1/1/1990', periods=N, freq='H',
|
|
tz='America/New_York')
|
|
ts = Series(np.random.randn(N), index=rng)
|
|
|
|
# also test Timestamp tz handling, GH #2789
|
|
result = ts.copy()
|
|
result["1990-01-01 09:00:00+00:00"] = 0
|
|
result["1990-01-01 09:00:00+00:00"] = ts[4]
|
|
assert_series_equal(result, ts)
|
|
|
|
result = ts.copy()
|
|
result["1990-01-01 03:00:00-06:00"] = 0
|
|
result["1990-01-01 03:00:00-06:00"] = ts[4]
|
|
assert_series_equal(result, ts)
|
|
|
|
# repeat with datetimes
|
|
result = ts.copy()
|
|
result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = 0
|
|
result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = ts[4]
|
|
assert_series_equal(result, ts)
|
|
|
|
result = ts.copy()
|
|
result[datetime(1990, 1, 1, 3, tzinfo=tz('America/Chicago'))] = 0
|
|
result[datetime(1990, 1, 1, 3, tzinfo=tz('America/Chicago'))] = ts[4]
|
|
assert_series_equal(result, ts)
|
|
|
|
|
|
def test_getitem_setitem_datetimeindex():
|
|
N = 50
|
|
# testing with timezone, GH #2785
|
|
rng = date_range('1/1/1990', periods=N, freq='H', tz='US/Eastern')
|
|
ts = Series(np.random.randn(N), index=rng)
|
|
|
|
result = ts["1990-01-01 04:00:00"]
|
|
expected = ts[4]
|
|
assert result == expected
|
|
|
|
result = ts.copy()
|
|
result["1990-01-01 04:00:00"] = 0
|
|
result["1990-01-01 04:00:00"] = ts[4]
|
|
assert_series_equal(result, ts)
|
|
|
|
result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"]
|
|
expected = ts[4:8]
|
|
assert_series_equal(result, expected)
|
|
|
|
result = ts.copy()
|
|
result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0
|
|
result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8]
|
|
assert_series_equal(result, ts)
|
|
|
|
lb = "1990-01-01 04:00:00"
|
|
rb = "1990-01-01 07:00:00"
|
|
# GH#18435 strings get a pass from tzawareness compat
|
|
result = ts[(ts.index >= lb) & (ts.index <= rb)]
|
|
expected = ts[4:8]
|
|
assert_series_equal(result, expected)
|
|
|
|
lb = "1990-01-01 04:00:00-0500"
|
|
rb = "1990-01-01 07:00:00-0500"
|
|
result = ts[(ts.index >= lb) & (ts.index <= rb)]
|
|
expected = ts[4:8]
|
|
assert_series_equal(result, expected)
|
|
|
|
# repeat all the above with naive datetimes
|
|
result = ts[datetime(1990, 1, 1, 4)]
|
|
expected = ts[4]
|
|
assert result == expected
|
|
|
|
result = ts.copy()
|
|
result[datetime(1990, 1, 1, 4)] = 0
|
|
result[datetime(1990, 1, 1, 4)] = ts[4]
|
|
assert_series_equal(result, ts)
|
|
|
|
result = ts[datetime(1990, 1, 1, 4):datetime(1990, 1, 1, 7)]
|
|
expected = ts[4:8]
|
|
assert_series_equal(result, expected)
|
|
|
|
result = ts.copy()
|
|
result[datetime(1990, 1, 1, 4):datetime(1990, 1, 1, 7)] = 0
|
|
result[datetime(1990, 1, 1, 4):datetime(1990, 1, 1, 7)] = ts[4:8]
|
|
assert_series_equal(result, ts)
|
|
|
|
lb = datetime(1990, 1, 1, 4)
|
|
rb = datetime(1990, 1, 1, 7)
|
|
with pytest.raises(TypeError):
|
|
# tznaive vs tzaware comparison is invalid
|
|
# see GH#18376, GH#18162
|
|
ts[(ts.index >= lb) & (ts.index <= rb)]
|
|
|
|
lb = pd.Timestamp(datetime(1990, 1, 1, 4)).tz_localize(rng.tzinfo)
|
|
rb = pd.Timestamp(datetime(1990, 1, 1, 7)).tz_localize(rng.tzinfo)
|
|
result = ts[(ts.index >= lb) & (ts.index <= rb)]
|
|
expected = ts[4:8]
|
|
assert_series_equal(result, expected)
|
|
|
|
result = ts[ts.index[4]]
|
|
expected = ts[4]
|
|
assert result == expected
|
|
|
|
result = ts[ts.index[4:8]]
|
|
expected = ts[4:8]
|
|
assert_series_equal(result, expected)
|
|
|
|
result = ts.copy()
|
|
result[ts.index[4:8]] = 0
|
|
result[4:8] = ts[4:8]
|
|
assert_series_equal(result, ts)
|
|
|
|
# also test partial date slicing
|
|
result = ts["1990-01-02"]
|
|
expected = ts[24:48]
|
|
assert_series_equal(result, expected)
|
|
|
|
result = ts.copy()
|
|
result["1990-01-02"] = 0
|
|
result["1990-01-02"] = ts[24:48]
|
|
assert_series_equal(result, ts)
|
|
|
|
|
|
def test_getitem_setitem_periodindex():
|
|
from pandas import period_range
|
|
|
|
N = 50
|
|
rng = period_range('1/1/1990', periods=N, freq='H')
|
|
ts = Series(np.random.randn(N), index=rng)
|
|
|
|
result = ts["1990-01-01 04"]
|
|
expected = ts[4]
|
|
assert result == expected
|
|
|
|
result = ts.copy()
|
|
result["1990-01-01 04"] = 0
|
|
result["1990-01-01 04"] = ts[4]
|
|
assert_series_equal(result, ts)
|
|
|
|
result = ts["1990-01-01 04":"1990-01-01 07"]
|
|
expected = ts[4:8]
|
|
assert_series_equal(result, expected)
|
|
|
|
result = ts.copy()
|
|
result["1990-01-01 04":"1990-01-01 07"] = 0
|
|
result["1990-01-01 04":"1990-01-01 07"] = ts[4:8]
|
|
assert_series_equal(result, ts)
|
|
|
|
lb = "1990-01-01 04"
|
|
rb = "1990-01-01 07"
|
|
result = ts[(ts.index >= lb) & (ts.index <= rb)]
|
|
expected = ts[4:8]
|
|
assert_series_equal(result, expected)
|
|
|
|
# GH 2782
|
|
result = ts[ts.index[4]]
|
|
expected = ts[4]
|
|
assert result == expected
|
|
|
|
result = ts[ts.index[4:8]]
|
|
expected = ts[4:8]
|
|
assert_series_equal(result, expected)
|
|
|
|
result = ts.copy()
|
|
result[ts.index[4:8]] = 0
|
|
result[4:8] = ts[4:8]
|
|
assert_series_equal(result, ts)
|
|
|
|
|
|
def test_getitem_median_slice_bug():
|
|
index = date_range('20090415', '20090519', freq='2B')
|
|
s = Series(np.random.randn(13), index=index)
|
|
|
|
indexer = [slice(6, 7, None)]
|
|
result = s[indexer]
|
|
expected = s[indexer[0]]
|
|
assert_series_equal(result, expected)
|
|
|
|
|
|
def test_datetime_indexing():
|
|
from pandas import date_range
|
|
|
|
index = date_range('1/1/2000', '1/7/2000')
|
|
index = index.repeat(3)
|
|
|
|
s = Series(len(index), index=index)
|
|
stamp = Timestamp('1/8/2000')
|
|
|
|
pytest.raises(KeyError, s.__getitem__, stamp)
|
|
s[stamp] = 0
|
|
assert s[stamp] == 0
|
|
|
|
# not monotonic
|
|
s = Series(len(index), index=index)
|
|
s = s[::-1]
|
|
|
|
pytest.raises(KeyError, s.__getitem__, stamp)
|
|
s[stamp] = 0
|
|
assert s[stamp] == 0
|
|
|
|
|
|
"""
|
|
test duplicates in time series
|
|
"""
|
|
|
|
|
|
@pytest.fixture(scope='module')
|
|
def dups():
|
|
dates = [datetime(2000, 1, 2), datetime(2000, 1, 2),
|
|
datetime(2000, 1, 2), datetime(2000, 1, 3),
|
|
datetime(2000, 1, 3), datetime(2000, 1, 3),
|
|
datetime(2000, 1, 4), datetime(2000, 1, 4),
|
|
datetime(2000, 1, 4), datetime(2000, 1, 5)]
|
|
|
|
return Series(np.random.randn(len(dates)), index=dates)
|
|
|
|
|
|
def test_constructor(dups):
|
|
assert isinstance(dups, Series)
|
|
assert isinstance(dups.index, DatetimeIndex)
|
|
|
|
|
|
def test_is_unique_monotonic(dups):
|
|
assert not dups.index.is_unique
|
|
|
|
|
|
def test_index_unique(dups):
|
|
uniques = dups.index.unique()
|
|
expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3),
|
|
datetime(2000, 1, 4), datetime(2000, 1, 5)])
|
|
assert uniques.dtype == 'M8[ns]' # sanity
|
|
tm.assert_index_equal(uniques, expected)
|
|
assert dups.index.nunique() == 4
|
|
|
|
# #2563
|
|
assert isinstance(uniques, DatetimeIndex)
|
|
|
|
dups_local = dups.index.tz_localize('US/Eastern')
|
|
dups_local.name = 'foo'
|
|
result = dups_local.unique()
|
|
expected = DatetimeIndex(expected, name='foo')
|
|
expected = expected.tz_localize('US/Eastern')
|
|
assert result.tz is not None
|
|
assert result.name == 'foo'
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# NaT, note this is excluded
|
|
arr = [1370745748 + t for t in range(20)] + [tslib.iNaT]
|
|
idx = DatetimeIndex(arr * 3)
|
|
tm.assert_index_equal(idx.unique(), DatetimeIndex(arr))
|
|
assert idx.nunique() == 20
|
|
assert idx.nunique(dropna=False) == 21
|
|
|
|
arr = [Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t)
|
|
for t in range(20)] + [NaT]
|
|
idx = DatetimeIndex(arr * 3)
|
|
tm.assert_index_equal(idx.unique(), DatetimeIndex(arr))
|
|
assert idx.nunique() == 20
|
|
assert idx.nunique(dropna=False) == 21
|
|
|
|
|
|
def test_index_dupes_contains():
|
|
d = datetime(2011, 12, 5, 20, 30)
|
|
ix = DatetimeIndex([d, d])
|
|
assert d in ix
|
|
|
|
|
|
def test_duplicate_dates_indexing(dups):
|
|
ts = dups
|
|
|
|
uniques = ts.index.unique()
|
|
for date in uniques:
|
|
result = ts[date]
|
|
|
|
mask = ts.index == date
|
|
total = (ts.index == date).sum()
|
|
expected = ts[mask]
|
|
if total > 1:
|
|
assert_series_equal(result, expected)
|
|
else:
|
|
assert_almost_equal(result, expected[0])
|
|
|
|
cp = ts.copy()
|
|
cp[date] = 0
|
|
expected = Series(np.where(mask, 0, ts), index=ts.index)
|
|
assert_series_equal(cp, expected)
|
|
|
|
pytest.raises(KeyError, ts.__getitem__, datetime(2000, 1, 6))
|
|
|
|
# new index
|
|
ts[datetime(2000, 1, 6)] = 0
|
|
assert ts[datetime(2000, 1, 6)] == 0
|
|
|
|
|
|
def test_range_slice():
|
|
idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000',
|
|
'1/4/2000'])
|
|
|
|
ts = Series(np.random.randn(len(idx)), index=idx)
|
|
|
|
result = ts['1/2/2000':]
|
|
expected = ts[1:]
|
|
assert_series_equal(result, expected)
|
|
|
|
result = ts['1/2/2000':'1/3/2000']
|
|
expected = ts[1:4]
|
|
assert_series_equal(result, expected)
|
|
|
|
|
|
def test_groupby_average_dup_values(dups):
|
|
result = dups.groupby(level=0).mean()
|
|
expected = dups.groupby(dups.index).mean()
|
|
assert_series_equal(result, expected)
|
|
|
|
|
|
def test_indexing_over_size_cutoff():
|
|
import datetime
|
|
# #1821
|
|
|
|
old_cutoff = _index._SIZE_CUTOFF
|
|
try:
|
|
_index._SIZE_CUTOFF = 1000
|
|
|
|
# create large list of non periodic datetime
|
|
dates = []
|
|
sec = datetime.timedelta(seconds=1)
|
|
half_sec = datetime.timedelta(microseconds=500000)
|
|
d = datetime.datetime(2011, 12, 5, 20, 30)
|
|
n = 1100
|
|
for i in range(n):
|
|
dates.append(d)
|
|
dates.append(d + sec)
|
|
dates.append(d + sec + half_sec)
|
|
dates.append(d + sec + sec + half_sec)
|
|
d += 3 * sec
|
|
|
|
# duplicate some values in the list
|
|
duplicate_positions = np.random.randint(0, len(dates) - 1, 20)
|
|
for p in duplicate_positions:
|
|
dates[p + 1] = dates[p]
|
|
|
|
df = DataFrame(np.random.randn(len(dates), 4),
|
|
index=dates,
|
|
columns=list('ABCD'))
|
|
|
|
pos = n * 3
|
|
timestamp = df.index[pos]
|
|
assert timestamp in df.index
|
|
|
|
# it works!
|
|
df.loc[timestamp]
|
|
assert len(df.loc[[timestamp]]) > 0
|
|
finally:
|
|
_index._SIZE_CUTOFF = old_cutoff
|
|
|
|
|
|
def test_indexing_unordered():
|
|
# GH 2437
|
|
rng = date_range(start='2011-01-01', end='2011-01-15')
|
|
ts = Series(np.random.rand(len(rng)), index=rng)
|
|
ts2 = pd.concat([ts[0:4], ts[-4:], ts[4:-4]])
|
|
|
|
for t in ts.index:
|
|
# TODO: unused?
|
|
s = str(t) # noqa
|
|
|
|
expected = ts[t]
|
|
result = ts2[t]
|
|
assert expected == result
|
|
|
|
# GH 3448 (ranges)
|
|
def compare(slobj):
|
|
result = ts2[slobj].copy()
|
|
result = result.sort_index()
|
|
expected = ts[slobj]
|
|
assert_series_equal(result, expected)
|
|
|
|
compare(slice('2011-01-01', '2011-01-15'))
|
|
compare(slice('2010-12-30', '2011-01-15'))
|
|
compare(slice('2011-01-01', '2011-01-16'))
|
|
|
|
# partial ranges
|
|
compare(slice('2011-01-01', '2011-01-6'))
|
|
compare(slice('2011-01-06', '2011-01-8'))
|
|
compare(slice('2011-01-06', '2011-01-12'))
|
|
|
|
# single values
|
|
result = ts2['2011'].sort_index()
|
|
expected = ts['2011']
|
|
assert_series_equal(result, expected)
|
|
|
|
# diff freq
|
|
rng = date_range(datetime(2005, 1, 1), periods=20, freq='M')
|
|
ts = Series(np.arange(len(rng)), index=rng)
|
|
ts = ts.take(np.random.permutation(20))
|
|
|
|
result = ts['2005']
|
|
for t in result.index:
|
|
assert t.year == 2005
|
|
|
|
|
|
def test_indexing():
|
|
idx = date_range("2001-1-1", periods=20, freq='M')
|
|
ts = Series(np.random.rand(len(idx)), index=idx)
|
|
|
|
# getting
|
|
|
|
# GH 3070, make sure semantics work on Series/Frame
|
|
expected = ts['2001']
|
|
expected.name = 'A'
|
|
|
|
df = DataFrame(dict(A=ts))
|
|
result = df['2001']['A']
|
|
assert_series_equal(expected, result)
|
|
|
|
# setting
|
|
ts['2001'] = 1
|
|
expected = ts['2001']
|
|
expected.name = 'A'
|
|
|
|
df.loc['2001', 'A'] = 1
|
|
|
|
result = df['2001']['A']
|
|
assert_series_equal(expected, result)
|
|
|
|
# GH3546 (not including times on the last day)
|
|
idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00',
|
|
freq='H')
|
|
ts = Series(lrange(len(idx)), index=idx)
|
|
expected = ts['2013-05']
|
|
assert_series_equal(expected, ts)
|
|
|
|
idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59',
|
|
freq='S')
|
|
ts = Series(lrange(len(idx)), index=idx)
|
|
expected = ts['2013-05']
|
|
assert_series_equal(expected, ts)
|
|
|
|
idx = [Timestamp('2013-05-31 00:00'),
|
|
Timestamp(datetime(2013, 5, 31, 23, 59, 59, 999999))]
|
|
ts = Series(lrange(len(idx)), index=idx)
|
|
expected = ts['2013']
|
|
assert_series_equal(expected, ts)
|
|
|
|
# GH14826, indexing with a seconds resolution string / datetime object
|
|
df = DataFrame(np.random.rand(5, 5),
|
|
columns=['open', 'high', 'low', 'close', 'volume'],
|
|
index=date_range('2012-01-02 18:01:00',
|
|
periods=5, tz='US/Central', freq='s'))
|
|
expected = df.loc[[df.index[2]]]
|
|
|
|
# this is a single date, so will raise
|
|
pytest.raises(KeyError, df.__getitem__, '2012-01-02 18:01:02', )
|
|
pytest.raises(KeyError, df.__getitem__, df.index[2], )
|
|
|
|
|
|
"""
|
|
test NaT support
|
|
"""
|
|
|
|
|
|
def test_set_none_nan():
|
|
series = Series(date_range('1/1/2000', periods=10))
|
|
series[3] = None
|
|
assert series[3] is NaT
|
|
|
|
series[3:5] = None
|
|
assert series[4] is NaT
|
|
|
|
series[5] = np.nan
|
|
assert series[5] is NaT
|
|
|
|
series[5:7] = np.nan
|
|
assert series[6] is NaT
|
|
|
|
|
|
def test_nat_operations():
|
|
# GH 8617
|
|
s = Series([0, pd.NaT], dtype='m8[ns]')
|
|
exp = s[0]
|
|
assert s.median() == exp
|
|
assert s.min() == exp
|
|
assert s.max() == exp
|
|
|
|
|
|
@pytest.mark.parametrize('method', ["round", "floor", "ceil"])
|
|
@pytest.mark.parametrize('freq', ["s", "5s", "min", "5min", "h", "5h"])
|
|
def test_round_nat(method, freq):
|
|
# GH14940
|
|
s = Series([pd.NaT])
|
|
expected = Series(pd.NaT)
|
|
round_method = getattr(s.dt, method)
|
|
assert_series_equal(round_method(freq), expected)
|