laywerrobot/lib/python3.6/site-packages/pandas/tests/reshape/merge/test_merge.py
2020-08-27 21:55:39 +02:00

1889 lines
75 KiB
Python

# pylint: disable=E1103
import random
import re
from collections import OrderedDict
from datetime import date, datetime
import numpy as np
import pytest
from numpy import nan
from numpy.random import randn
import pandas as pd
import pandas.util.testing as tm
from pandas import (Categorical, CategoricalIndex, DataFrame, DatetimeIndex,
Float64Index, Index, Int64Index, MultiIndex, RangeIndex,
Series, UInt64Index)
from pandas.api.types import CategoricalDtype as CDT
from pandas.compat import lrange, lzip
from pandas.core.dtypes.common import is_categorical_dtype, is_object_dtype
from pandas.core.dtypes.dtypes import CategoricalDtype
from pandas.core.reshape.concat import concat
from pandas.core.reshape.merge import MergeError, merge
from pandas.util.testing import assert_frame_equal, assert_series_equal
N = 50
NGROUPS = 8
def get_test_data(ngroups=NGROUPS, n=N):
unique_groups = lrange(ngroups)
arr = np.asarray(np.tile(unique_groups, n // ngroups))
if len(arr) < n:
arr = np.asarray(list(arr) + unique_groups[:n - len(arr)])
random.shuffle(arr)
return arr
class TestMerge(object):
def setup_method(self, method):
# aggregate multiple columns
self.df = DataFrame({'key1': get_test_data(),
'key2': get_test_data(),
'data1': np.random.randn(N),
'data2': np.random.randn(N)})
# exclude a couple keys for fun
self.df = self.df[self.df['key2'] > 1]
self.df2 = DataFrame({'key1': get_test_data(n=N // 5),
'key2': get_test_data(ngroups=NGROUPS // 2,
n=N // 5),
'value': np.random.randn(N // 5)})
self.left = DataFrame({'key': ['a', 'b', 'c', 'd', 'e', 'e', 'a'],
'v1': np.random.randn(7)})
self.right = DataFrame({'v2': np.random.randn(4)},
index=['d', 'b', 'c', 'a'])
def test_merge_inner_join_empty(self):
# GH 15328
df_empty = pd.DataFrame()
df_a = pd.DataFrame({'a': [1, 2]}, index=[0, 1], dtype='int64')
result = pd.merge(df_empty, df_a, left_index=True, right_index=True)
expected = pd.DataFrame({'a': []}, index=[], dtype='int64')
assert_frame_equal(result, expected)
def test_merge_common(self):
joined = merge(self.df, self.df2)
exp = merge(self.df, self.df2, on=['key1', 'key2'])
tm.assert_frame_equal(joined, exp)
def test_merge_index_as_on_arg(self):
# GH14355
left = self.df.set_index('key1')
right = self.df2.set_index('key1')
result = merge(left, right, on='key1')
expected = merge(self.df, self.df2, on='key1').set_index('key1')
assert_frame_equal(result, expected)
def test_merge_index_singlekey_right_vs_left(self):
left = DataFrame({'key': ['a', 'b', 'c', 'd', 'e', 'e', 'a'],
'v1': np.random.randn(7)})
right = DataFrame({'v2': np.random.randn(4)},
index=['d', 'b', 'c', 'a'])
merged1 = merge(left, right, left_on='key',
right_index=True, how='left', sort=False)
merged2 = merge(right, left, right_on='key',
left_index=True, how='right', sort=False)
assert_frame_equal(merged1, merged2.loc[:, merged1.columns])
merged1 = merge(left, right, left_on='key',
right_index=True, how='left', sort=True)
merged2 = merge(right, left, right_on='key',
left_index=True, how='right', sort=True)
assert_frame_equal(merged1, merged2.loc[:, merged1.columns])
def test_merge_index_singlekey_inner(self):
left = DataFrame({'key': ['a', 'b', 'c', 'd', 'e', 'e', 'a'],
'v1': np.random.randn(7)})
right = DataFrame({'v2': np.random.randn(4)},
index=['d', 'b', 'c', 'a'])
# inner join
result = merge(left, right, left_on='key', right_index=True,
how='inner')
expected = left.join(right, on='key').loc[result.index]
assert_frame_equal(result, expected)
result = merge(right, left, right_on='key', left_index=True,
how='inner')
expected = left.join(right, on='key').loc[result.index]
assert_frame_equal(result, expected.loc[:, result.columns])
def test_merge_misspecified(self):
pytest.raises(ValueError, merge, self.left, self.right,
left_index=True)
pytest.raises(ValueError, merge, self.left, self.right,
right_index=True)
pytest.raises(ValueError, merge, self.left, self.left,
left_on='key', on='key')
pytest.raises(ValueError, merge, self.df, self.df2,
left_on=['key1'], right_on=['key1', 'key2'])
def test_index_and_on_parameters_confusion(self):
pytest.raises(ValueError, merge, self.df, self.df2, how='left',
left_index=False, right_index=['key1', 'key2'])
pytest.raises(ValueError, merge, self.df, self.df2, how='left',
left_index=['key1', 'key2'], right_index=False)
pytest.raises(ValueError, merge, self.df, self.df2, how='left',
left_index=['key1', 'key2'],
right_index=['key1', 'key2'])
def test_merge_overlap(self):
merged = merge(self.left, self.left, on='key')
exp_len = (self.left['key'].value_counts() ** 2).sum()
assert len(merged) == exp_len
assert 'v1_x' in merged
assert 'v1_y' in merged
def test_merge_different_column_key_names(self):
left = DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],
'value': [1, 2, 3, 4]})
right = DataFrame({'rkey': ['foo', 'bar', 'qux', 'foo'],
'value': [5, 6, 7, 8]})
merged = left.merge(right, left_on='lkey', right_on='rkey',
how='outer', sort=True)
exp = pd.Series(['bar', 'baz', 'foo', 'foo', 'foo', 'foo', np.nan],
name='lkey')
tm.assert_series_equal(merged['lkey'], exp)
exp = pd.Series(['bar', np.nan, 'foo', 'foo', 'foo', 'foo', 'qux'],
name='rkey')
tm.assert_series_equal(merged['rkey'], exp)
exp = pd.Series([2, 3, 1, 1, 4, 4, np.nan], name='value_x')
tm.assert_series_equal(merged['value_x'], exp)
exp = pd.Series([6, np.nan, 5, 8, 5, 8, 7], name='value_y')
tm.assert_series_equal(merged['value_y'], exp)
def test_merge_copy(self):
left = DataFrame({'a': 0, 'b': 1}, index=lrange(10))
right = DataFrame({'c': 'foo', 'd': 'bar'}, index=lrange(10))
merged = merge(left, right, left_index=True,
right_index=True, copy=True)
merged['a'] = 6
assert (left['a'] == 0).all()
merged['d'] = 'peekaboo'
assert (right['d'] == 'bar').all()
def test_merge_nocopy(self):
left = DataFrame({'a': 0, 'b': 1}, index=lrange(10))
right = DataFrame({'c': 'foo', 'd': 'bar'}, index=lrange(10))
merged = merge(left, right, left_index=True,
right_index=True, copy=False)
merged['a'] = 6
assert (left['a'] == 6).all()
merged['d'] = 'peekaboo'
assert (right['d'] == 'peekaboo').all()
def test_intelligently_handle_join_key(self):
# #733, be a bit more 1337 about not returning unconsolidated DataFrame
left = DataFrame({'key': [1, 1, 2, 2, 3],
'value': lrange(5)}, columns=['value', 'key'])
right = DataFrame({'key': [1, 1, 2, 3, 4, 5],
'rvalue': lrange(6)})
joined = merge(left, right, on='key', how='outer')
expected = DataFrame({'key': [1, 1, 1, 1, 2, 2, 3, 4, 5],
'value': np.array([0, 0, 1, 1, 2, 3, 4,
np.nan, np.nan]),
'rvalue': [0, 1, 0, 1, 2, 2, 3, 4, 5]},
columns=['value', 'key', 'rvalue'])
assert_frame_equal(joined, expected)
def test_merge_join_key_dtype_cast(self):
# #8596
df1 = DataFrame({'key': [1], 'v1': [10]})
df2 = DataFrame({'key': [2], 'v1': [20]})
df = merge(df1, df2, how='outer')
assert df['key'].dtype == 'int64'
df1 = DataFrame({'key': [True], 'v1': [1]})
df2 = DataFrame({'key': [False], 'v1': [0]})
df = merge(df1, df2, how='outer')
# GH13169
# this really should be bool
assert df['key'].dtype == 'object'
df1 = DataFrame({'val': [1]})
df2 = DataFrame({'val': [2]})
lkey = np.array([1])
rkey = np.array([2])
df = merge(df1, df2, left_on=lkey, right_on=rkey, how='outer')
assert df['key_0'].dtype == 'int64'
def test_handle_join_key_pass_array(self):
left = DataFrame({'key': [1, 1, 2, 2, 3],
'value': lrange(5)}, columns=['value', 'key'])
right = DataFrame({'rvalue': lrange(6)})
key = np.array([1, 1, 2, 3, 4, 5])
merged = merge(left, right, left_on='key', right_on=key, how='outer')
merged2 = merge(right, left, left_on=key, right_on='key', how='outer')
assert_series_equal(merged['key'], merged2['key'])
assert merged['key'].notna().all()
assert merged2['key'].notna().all()
left = DataFrame({'value': lrange(5)}, columns=['value'])
right = DataFrame({'rvalue': lrange(6)})
lkey = np.array([1, 1, 2, 2, 3])
rkey = np.array([1, 1, 2, 3, 4, 5])
merged = merge(left, right, left_on=lkey, right_on=rkey, how='outer')
tm.assert_series_equal(merged['key_0'], Series([1, 1, 1, 1, 2,
2, 3, 4, 5],
name='key_0'))
left = DataFrame({'value': lrange(3)})
right = DataFrame({'rvalue': lrange(6)})
key = np.array([0, 1, 1, 2, 2, 3], dtype=np.int64)
merged = merge(left, right, left_index=True, right_on=key, how='outer')
tm.assert_series_equal(merged['key_0'], Series(key, name='key_0'))
def test_no_overlap_more_informative_error(self):
dt = datetime.now()
df1 = DataFrame({'x': ['a']}, index=[dt])
df2 = DataFrame({'y': ['b', 'c']}, index=[dt, dt])
pytest.raises(MergeError, merge, df1, df2)
msg = ('No common columns to perform merge on. '
'Merge options: left_on={lon}, right_on={ron}, '
'left_index={lidx}, right_index={ridx}'
.format(lon=None, ron=None, lidx=False, ridx=False))
with tm.assert_raises_regex(MergeError, msg):
merge(df1, df2)
def test_merge_non_unique_indexes(self):
dt = datetime(2012, 5, 1)
dt2 = datetime(2012, 5, 2)
dt3 = datetime(2012, 5, 3)
dt4 = datetime(2012, 5, 4)
df1 = DataFrame({'x': ['a']}, index=[dt])
df2 = DataFrame({'y': ['b', 'c']}, index=[dt, dt])
_check_merge(df1, df2)
# Not monotonic
df1 = DataFrame({'x': ['a', 'b', 'q']}, index=[dt2, dt, dt4])
df2 = DataFrame({'y': ['c', 'd', 'e', 'f', 'g', 'h']},
index=[dt3, dt3, dt2, dt2, dt, dt])
_check_merge(df1, df2)
df1 = DataFrame({'x': ['a', 'b']}, index=[dt, dt])
df2 = DataFrame({'y': ['c', 'd']}, index=[dt, dt])
_check_merge(df1, df2)
def test_merge_non_unique_index_many_to_many(self):
dt = datetime(2012, 5, 1)
dt2 = datetime(2012, 5, 2)
dt3 = datetime(2012, 5, 3)
df1 = DataFrame({'x': ['a', 'b', 'c', 'd']},
index=[dt2, dt2, dt, dt])
df2 = DataFrame({'y': ['e', 'f', 'g', ' h', 'i']},
index=[dt2, dt2, dt3, dt, dt])
_check_merge(df1, df2)
def test_left_merge_empty_dataframe(self):
left = DataFrame({'key': [1], 'value': [2]})
right = DataFrame({'key': []})
result = merge(left, right, on='key', how='left')
assert_frame_equal(result, left)
result = merge(right, left, on='key', how='right')
assert_frame_equal(result, left)
@pytest.mark.parametrize('kwarg',
[dict(left_index=True, right_index=True),
dict(left_index=True, right_on='x'),
dict(left_on='a', right_index=True),
dict(left_on='a', right_on='x')])
def test_merge_left_empty_right_empty(self, join_type, kwarg):
# GH 10824
left = pd.DataFrame([], columns=['a', 'b', 'c'])
right = pd.DataFrame([], columns=['x', 'y', 'z'])
exp_in = pd.DataFrame([], columns=['a', 'b', 'c', 'x', 'y', 'z'],
index=pd.Index([], dtype=object),
dtype=object)
result = pd.merge(left, right, how=join_type, **kwarg)
tm.assert_frame_equal(result, exp_in)
def test_merge_left_empty_right_notempty(self):
# GH 10824
left = pd.DataFrame([], columns=['a', 'b', 'c'])
right = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
columns=['x', 'y', 'z'])
exp_out = pd.DataFrame({'a': np.array([np.nan] * 3, dtype=object),
'b': np.array([np.nan] * 3, dtype=object),
'c': np.array([np.nan] * 3, dtype=object),
'x': [1, 4, 7],
'y': [2, 5, 8],
'z': [3, 6, 9]},
columns=['a', 'b', 'c', 'x', 'y', 'z'])
exp_in = exp_out[0:0] # make empty DataFrame keeping dtype
# result will have object dtype
exp_in.index = exp_in.index.astype(object)
def check1(exp, kwarg):
result = pd.merge(left, right, how='inner', **kwarg)
tm.assert_frame_equal(result, exp)
result = pd.merge(left, right, how='left', **kwarg)
tm.assert_frame_equal(result, exp)
def check2(exp, kwarg):
result = pd.merge(left, right, how='right', **kwarg)
tm.assert_frame_equal(result, exp)
result = pd.merge(left, right, how='outer', **kwarg)
tm.assert_frame_equal(result, exp)
for kwarg in [dict(left_index=True, right_index=True),
dict(left_index=True, right_on='x')]:
check1(exp_in, kwarg)
check2(exp_out, kwarg)
kwarg = dict(left_on='a', right_index=True)
check1(exp_in, kwarg)
exp_out['a'] = [0, 1, 2]
check2(exp_out, kwarg)
kwarg = dict(left_on='a', right_on='x')
check1(exp_in, kwarg)
exp_out['a'] = np.array([np.nan] * 3, dtype=object)
check2(exp_out, kwarg)
def test_merge_left_notempty_right_empty(self):
# GH 10824
left = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
columns=['a', 'b', 'c'])
right = pd.DataFrame([], columns=['x', 'y', 'z'])
exp_out = pd.DataFrame({'a': [1, 4, 7],
'b': [2, 5, 8],
'c': [3, 6, 9],
'x': np.array([np.nan] * 3, dtype=object),
'y': np.array([np.nan] * 3, dtype=object),
'z': np.array([np.nan] * 3, dtype=object)},
columns=['a', 'b', 'c', 'x', 'y', 'z'])
exp_in = exp_out[0:0] # make empty DataFrame keeping dtype
# result will have object dtype
exp_in.index = exp_in.index.astype(object)
def check1(exp, kwarg):
result = pd.merge(left, right, how='inner', **kwarg)
tm.assert_frame_equal(result, exp)
result = pd.merge(left, right, how='right', **kwarg)
tm.assert_frame_equal(result, exp)
def check2(exp, kwarg):
result = pd.merge(left, right, how='left', **kwarg)
tm.assert_frame_equal(result, exp)
result = pd.merge(left, right, how='outer', **kwarg)
tm.assert_frame_equal(result, exp)
for kwarg in [dict(left_index=True, right_index=True),
dict(left_index=True, right_on='x'),
dict(left_on='a', right_index=True),
dict(left_on='a', right_on='x')]:
check1(exp_in, kwarg)
check2(exp_out, kwarg)
def test_merge_nosort(self):
# #2098, anything to do?
from datetime import datetime
d = {"var1": np.random.randint(0, 10, size=10),
"var2": np.random.randint(0, 10, size=10),
"var3": [datetime(2012, 1, 12),
datetime(2011, 2, 4),
datetime(2010, 2, 3),
datetime(2012, 1, 12),
datetime(2011, 2, 4),
datetime(2012, 4, 3),
datetime(2012, 3, 4),
datetime(2008, 5, 1),
datetime(2010, 2, 3),
datetime(2012, 2, 3)]}
df = DataFrame.from_dict(d)
var3 = df.var3.unique()
var3.sort()
new = DataFrame.from_dict({"var3": var3,
"var8": np.random.random(7)})
result = df.merge(new, on="var3", sort=False)
exp = merge(df, new, on='var3', sort=False)
assert_frame_equal(result, exp)
assert (df.var3.unique() == result.var3.unique()).all()
def test_merge_nan_right(self):
df1 = DataFrame({"i1": [0, 1], "i2": [0, 1]})
df2 = DataFrame({"i1": [0], "i3": [0]})
result = df1.join(df2, on="i1", rsuffix="_")
expected = (DataFrame({'i1': {0: 0.0, 1: 1}, 'i2': {0: 0, 1: 1},
'i1_': {0: 0, 1: np.nan},
'i3': {0: 0.0, 1: np.nan},
None: {0: 0, 1: 0}})
.set_index(None)
.reset_index()[['i1', 'i2', 'i1_', 'i3']])
assert_frame_equal(result, expected, check_dtype=False)
df1 = DataFrame({"i1": [0, 1], "i2": [0.5, 1.5]})
df2 = DataFrame({"i1": [0], "i3": [0.7]})
result = df1.join(df2, rsuffix="_", on='i1')
expected = (DataFrame({'i1': {0: 0, 1: 1}, 'i1_': {0: 0.0, 1: nan},
'i2': {0: 0.5, 1: 1.5},
'i3': {0: 0.69999999999999996,
1: nan}})
[['i1', 'i2', 'i1_', 'i3']])
assert_frame_equal(result, expected)
def test_merge_type(self):
class NotADataFrame(DataFrame):
@property
def _constructor(self):
return NotADataFrame
nad = NotADataFrame(self.df)
result = nad.merge(self.df2, on='key1')
assert isinstance(result, NotADataFrame)
def test_join_append_timedeltas(self):
import datetime as dt
from pandas import NaT
# timedelta64 issues with join/merge
# GH 5695
d = {'d': dt.datetime(2013, 11, 5, 5, 56), 't': dt.timedelta(0, 22500)}
df = DataFrame(columns=list('dt'))
df = df.append(d, ignore_index=True)
result = df.append(d, ignore_index=True)
expected = DataFrame({'d': [dt.datetime(2013, 11, 5, 5, 56),
dt.datetime(2013, 11, 5, 5, 56)],
't': [dt.timedelta(0, 22500),
dt.timedelta(0, 22500)]})
assert_frame_equal(result, expected)
td = np.timedelta64(300000000)
lhs = DataFrame(Series([td, td], index=["A", "B"]))
rhs = DataFrame(Series([td], index=["A"]))
result = lhs.join(rhs, rsuffix='r', how="left")
expected = DataFrame({'0': Series([td, td], index=list('AB')),
'0r': Series([td, NaT], index=list('AB'))})
assert_frame_equal(result, expected)
def test_other_datetime_unit(self):
# GH 13389
df1 = pd.DataFrame({'entity_id': [101, 102]})
s = pd.Series([None, None], index=[101, 102], name='days')
for dtype in ['datetime64[D]', 'datetime64[h]', 'datetime64[m]',
'datetime64[s]', 'datetime64[ms]', 'datetime64[us]',
'datetime64[ns]']:
df2 = s.astype(dtype).to_frame('days')
# coerces to datetime64[ns], thus sholuld not be affected
assert df2['days'].dtype == 'datetime64[ns]'
result = df1.merge(df2, left_on='entity_id', right_index=True)
exp = pd.DataFrame({'entity_id': [101, 102],
'days': np.array(['nat', 'nat'],
dtype='datetime64[ns]')},
columns=['entity_id', 'days'])
tm.assert_frame_equal(result, exp)
@pytest.mark.parametrize("unit", ['D', 'h', 'm', 's', 'ms', 'us', 'ns'])
def test_other_timedelta_unit(self, unit):
# GH 13389
df1 = pd.DataFrame({'entity_id': [101, 102]})
s = pd.Series([None, None], index=[101, 102], name='days')
dtype = "m8[{}]".format(unit)
df2 = s.astype(dtype).to_frame('days')
assert df2['days'].dtype == 'm8[ns]'
result = df1.merge(df2, left_on='entity_id', right_index=True)
exp = pd.DataFrame({'entity_id': [101, 102],
'days': np.array(['nat', 'nat'],
dtype=dtype)},
columns=['entity_id', 'days'])
tm.assert_frame_equal(result, exp)
def test_overlapping_columns_error_message(self):
df = DataFrame({'key': [1, 2, 3],
'v1': [4, 5, 6],
'v2': [7, 8, 9]})
df2 = DataFrame({'key': [1, 2, 3],
'v1': [4, 5, 6],
'v2': [7, 8, 9]})
df.columns = ['key', 'foo', 'foo']
df2.columns = ['key', 'bar', 'bar']
expected = DataFrame({'key': [1, 2, 3],
'v1': [4, 5, 6],
'v2': [7, 8, 9],
'v3': [4, 5, 6],
'v4': [7, 8, 9]})
expected.columns = ['key', 'foo', 'foo', 'bar', 'bar']
assert_frame_equal(merge(df, df2), expected)
# #2649, #10639
df2.columns = ['key1', 'foo', 'foo']
pytest.raises(ValueError, merge, df, df2)
def test_merge_on_datetime64tz(self):
# GH11405
left = pd.DataFrame({'key': pd.date_range('20151010', periods=2,
tz='US/Eastern'),
'value': [1, 2]})
right = pd.DataFrame({'key': pd.date_range('20151011', periods=3,
tz='US/Eastern'),
'value': [1, 2, 3]})
expected = DataFrame({'key': pd.date_range('20151010', periods=4,
tz='US/Eastern'),
'value_x': [1, 2, np.nan, np.nan],
'value_y': [np.nan, 1, 2, 3]})
result = pd.merge(left, right, on='key', how='outer')
assert_frame_equal(result, expected)
left = pd.DataFrame({'key': [1, 2],
'value': pd.date_range('20151010', periods=2,
tz='US/Eastern')})
right = pd.DataFrame({'key': [2, 3],
'value': pd.date_range('20151011', periods=2,
tz='US/Eastern')})
expected = DataFrame({
'key': [1, 2, 3],
'value_x': list(pd.date_range('20151010', periods=2,
tz='US/Eastern')) + [pd.NaT],
'value_y': [pd.NaT] + list(pd.date_range('20151011', periods=2,
tz='US/Eastern'))})
result = pd.merge(left, right, on='key', how='outer')
assert_frame_equal(result, expected)
assert result['value_x'].dtype == 'datetime64[ns, US/Eastern]'
assert result['value_y'].dtype == 'datetime64[ns, US/Eastern]'
def test_merge_non_unique_period_index(self):
# GH #16871
index = pd.period_range('2016-01-01', periods=16, freq='M')
df = DataFrame([i for i in range(len(index))],
index=index, columns=['pnum'])
df2 = concat([df, df])
result = df.merge(df2, left_index=True, right_index=True, how='inner')
expected = DataFrame(
np.tile(np.arange(16, dtype=np.int64).repeat(2).reshape(-1, 1), 2),
columns=['pnum_x', 'pnum_y'], index=df2.sort_index().index)
tm.assert_frame_equal(result, expected)
def test_merge_on_periods(self):
left = pd.DataFrame({'key': pd.period_range('20151010', periods=2,
freq='D'),
'value': [1, 2]})
right = pd.DataFrame({'key': pd.period_range('20151011', periods=3,
freq='D'),
'value': [1, 2, 3]})
expected = DataFrame({'key': pd.period_range('20151010', periods=4,
freq='D'),
'value_x': [1, 2, np.nan, np.nan],
'value_y': [np.nan, 1, 2, 3]})
result = pd.merge(left, right, on='key', how='outer')
assert_frame_equal(result, expected)
left = pd.DataFrame({'key': [1, 2],
'value': pd.period_range('20151010', periods=2,
freq='D')})
right = pd.DataFrame({'key': [2, 3],
'value': pd.period_range('20151011', periods=2,
freq='D')})
exp_x = pd.period_range('20151010', periods=2, freq='D')
exp_y = pd.period_range('20151011', periods=2, freq='D')
expected = DataFrame({'key': [1, 2, 3],
'value_x': list(exp_x) + [pd.NaT],
'value_y': [pd.NaT] + list(exp_y)})
result = pd.merge(left, right, on='key', how='outer')
assert_frame_equal(result, expected)
assert result['value_x'].dtype == 'object'
assert result['value_y'].dtype == 'object'
def test_indicator(self):
# PR #10054. xref #7412 and closes #8790.
df1 = DataFrame({'col1': [0, 1], 'col_conflict': [1, 2],
'col_left': ['a', 'b']})
df1_copy = df1.copy()
df2 = DataFrame({'col1': [1, 2, 3, 4, 5],
'col_conflict': [1, 2, 3, 4, 5],
'col_right': [2, 2, 2, 2, 2]})
df2_copy = df2.copy()
df_result = DataFrame({
'col1': [0, 1, 2, 3, 4, 5],
'col_conflict_x': [1, 2, np.nan, np.nan, np.nan, np.nan],
'col_left': ['a', 'b', np.nan, np.nan, np.nan, np.nan],
'col_conflict_y': [np.nan, 1, 2, 3, 4, 5],
'col_right': [np.nan, 2, 2, 2, 2, 2]})
df_result['_merge'] = Categorical(
['left_only', 'both', 'right_only',
'right_only', 'right_only', 'right_only'],
categories=['left_only', 'right_only', 'both'])
df_result = df_result[['col1', 'col_conflict_x', 'col_left',
'col_conflict_y', 'col_right', '_merge']]
test = merge(df1, df2, on='col1', how='outer', indicator=True)
assert_frame_equal(test, df_result)
test = df1.merge(df2, on='col1', how='outer', indicator=True)
assert_frame_equal(test, df_result)
# No side effects
assert_frame_equal(df1, df1_copy)
assert_frame_equal(df2, df2_copy)
# Check with custom name
df_result_custom_name = df_result
df_result_custom_name = df_result_custom_name.rename(
columns={'_merge': 'custom_name'})
test_custom_name = merge(
df1, df2, on='col1', how='outer', indicator='custom_name')
assert_frame_equal(test_custom_name, df_result_custom_name)
test_custom_name = df1.merge(
df2, on='col1', how='outer', indicator='custom_name')
assert_frame_equal(test_custom_name, df_result_custom_name)
# Check only accepts strings and booleans
with pytest.raises(ValueError):
merge(df1, df2, on='col1', how='outer', indicator=5)
with pytest.raises(ValueError):
df1.merge(df2, on='col1', how='outer', indicator=5)
# Check result integrity
test2 = merge(df1, df2, on='col1', how='left', indicator=True)
assert (test2._merge != 'right_only').all()
test2 = df1.merge(df2, on='col1', how='left', indicator=True)
assert (test2._merge != 'right_only').all()
test3 = merge(df1, df2, on='col1', how='right', indicator=True)
assert (test3._merge != 'left_only').all()
test3 = df1.merge(df2, on='col1', how='right', indicator=True)
assert (test3._merge != 'left_only').all()
test4 = merge(df1, df2, on='col1', how='inner', indicator=True)
assert (test4._merge == 'both').all()
test4 = df1.merge(df2, on='col1', how='inner', indicator=True)
assert (test4._merge == 'both').all()
# Check if working name in df
for i in ['_right_indicator', '_left_indicator', '_merge']:
df_badcolumn = DataFrame({'col1': [1, 2], i: [2, 2]})
with pytest.raises(ValueError):
merge(df1, df_badcolumn, on='col1',
how='outer', indicator=True)
with pytest.raises(ValueError):
df1.merge(df_badcolumn, on='col1', how='outer', indicator=True)
# Check for name conflict with custom name
df_badcolumn = DataFrame(
{'col1': [1, 2], 'custom_column_name': [2, 2]})
with pytest.raises(ValueError):
merge(df1, df_badcolumn, on='col1', how='outer',
indicator='custom_column_name')
with pytest.raises(ValueError):
df1.merge(df_badcolumn, on='col1', how='outer',
indicator='custom_column_name')
# Merge on multiple columns
df3 = DataFrame({'col1': [0, 1], 'col2': ['a', 'b']})
df4 = DataFrame({'col1': [1, 1, 3], 'col2': ['b', 'x', 'y']})
hand_coded_result = DataFrame({'col1': [0, 1, 1, 3],
'col2': ['a', 'b', 'x', 'y']})
hand_coded_result['_merge'] = Categorical(
['left_only', 'both', 'right_only', 'right_only'],
categories=['left_only', 'right_only', 'both'])
test5 = merge(df3, df4, on=['col1', 'col2'],
how='outer', indicator=True)
assert_frame_equal(test5, hand_coded_result)
test5 = df3.merge(df4, on=['col1', 'col2'],
how='outer', indicator=True)
assert_frame_equal(test5, hand_coded_result)
def test_validation(self):
left = DataFrame({'a': ['a', 'b', 'c', 'd'],
'b': ['cat', 'dog', 'weasel', 'horse']},
index=range(4))
right = DataFrame({'a': ['a', 'b', 'c', 'd', 'e'],
'c': ['meow', 'bark', 'um... weasel noise?',
'nay', 'chirp']},
index=range(5))
# Make sure no side effects.
left_copy = left.copy()
right_copy = right.copy()
result = merge(left, right, left_index=True, right_index=True,
validate='1:1')
assert_frame_equal(left, left_copy)
assert_frame_equal(right, right_copy)
# make sure merge still correct
expected = DataFrame({'a_x': ['a', 'b', 'c', 'd'],
'b': ['cat', 'dog', 'weasel', 'horse'],
'a_y': ['a', 'b', 'c', 'd'],
'c': ['meow', 'bark', 'um... weasel noise?',
'nay']},
index=range(4),
columns=['a_x', 'b', 'a_y', 'c'])
result = merge(left, right, left_index=True, right_index=True,
validate='one_to_one')
assert_frame_equal(result, expected)
expected_2 = DataFrame({'a': ['a', 'b', 'c', 'd'],
'b': ['cat', 'dog', 'weasel', 'horse'],
'c': ['meow', 'bark', 'um... weasel noise?',
'nay']},
index=range(4))
result = merge(left, right, on='a', validate='1:1')
assert_frame_equal(left, left_copy)
assert_frame_equal(right, right_copy)
assert_frame_equal(result, expected_2)
result = merge(left, right, on='a', validate='one_to_one')
assert_frame_equal(result, expected_2)
# One index, one column
expected_3 = DataFrame({'b': ['cat', 'dog', 'weasel', 'horse'],
'a': ['a', 'b', 'c', 'd'],
'c': ['meow', 'bark', 'um... weasel noise?',
'nay']},
columns=['b', 'a', 'c'],
index=range(4))
left_index_reset = left.set_index('a')
result = merge(left_index_reset, right, left_index=True,
right_on='a', validate='one_to_one')
assert_frame_equal(result, expected_3)
# Dups on right
right_w_dups = right.append(pd.DataFrame({'a': ['e'], 'c': ['moo']},
index=[4]))
merge(left, right_w_dups, left_index=True, right_index=True,
validate='one_to_many')
with pytest.raises(MergeError):
merge(left, right_w_dups, left_index=True, right_index=True,
validate='one_to_one')
with pytest.raises(MergeError):
merge(left, right_w_dups, on='a', validate='one_to_one')
# Dups on left
left_w_dups = left.append(pd.DataFrame({'a': ['a'], 'c': ['cow']},
index=[3]), sort=True)
merge(left_w_dups, right, left_index=True, right_index=True,
validate='many_to_one')
with pytest.raises(MergeError):
merge(left_w_dups, right, left_index=True, right_index=True,
validate='one_to_one')
with pytest.raises(MergeError):
merge(left_w_dups, right, on='a', validate='one_to_one')
# Dups on both
merge(left_w_dups, right_w_dups, on='a', validate='many_to_many')
with pytest.raises(MergeError):
merge(left_w_dups, right_w_dups, left_index=True,
right_index=True, validate='many_to_one')
with pytest.raises(MergeError):
merge(left_w_dups, right_w_dups, on='a',
validate='one_to_many')
# Check invalid arguments
with pytest.raises(ValueError):
merge(left, right, on='a', validate='jibberish')
# Two column merge, dups in both, but jointly no dups.
left = DataFrame({'a': ['a', 'a', 'b', 'b'],
'b': [0, 1, 0, 1],
'c': ['cat', 'dog', 'weasel', 'horse']},
index=range(4))
right = DataFrame({'a': ['a', 'a', 'b'],
'b': [0, 1, 0],
'd': ['meow', 'bark', 'um... weasel noise?']},
index=range(3))
expected_multi = DataFrame({'a': ['a', 'a', 'b'],
'b': [0, 1, 0],
'c': ['cat', 'dog', 'weasel'],
'd': ['meow', 'bark',
'um... weasel noise?']},
index=range(3))
with pytest.raises(MergeError):
merge(left, right, on='a', validate='1:1')
result = merge(left, right, on=['a', 'b'], validate='1:1')
assert_frame_equal(result, expected_multi)
def test_merge_two_empty_df_no_division_error(self):
# GH17776, PR #17846
a = pd.DataFrame({'a': [], 'b': [], 'c': []})
with np.errstate(divide='raise'):
merge(a, a, on=('a', 'b'))
def _check_merge(x, y):
for how in ['inner', 'left', 'outer']:
result = x.join(y, how=how)
expected = merge(x.reset_index(), y.reset_index(), how=how,
sort=True)
expected = expected.set_index('index')
# TODO check_names on merge?
assert_frame_equal(result, expected, check_names=False)
class TestMergeMulti(object):
def setup_method(self, method):
self.index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
['one', 'two', 'three']],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['first', 'second'])
self.to_join = DataFrame(np.random.randn(10, 3), index=self.index,
columns=['j_one', 'j_two', 'j_three'])
# a little relevant example with NAs
key1 = ['bar', 'bar', 'bar', 'foo', 'foo', 'baz', 'baz', 'qux',
'qux', 'snap']
key2 = ['two', 'one', 'three', 'one', 'two', 'one', 'two', 'two',
'three', 'one']
data = np.random.randn(len(key1))
self.data = DataFrame({'key1': key1, 'key2': key2,
'data': data})
def test_merge_on_multikey(self):
joined = self.data.join(self.to_join, on=['key1', 'key2'])
join_key = Index(lzip(self.data['key1'], self.data['key2']))
indexer = self.to_join.index.get_indexer(join_key)
ex_values = self.to_join.values.take(indexer, axis=0)
ex_values[indexer == -1] = np.nan
expected = self.data.join(DataFrame(ex_values,
columns=self.to_join.columns))
# TODO: columns aren't in the same order yet
assert_frame_equal(joined, expected.loc[:, joined.columns])
left = self.data.join(self.to_join, on=['key1', 'key2'], sort=True)
right = expected.loc[:, joined.columns].sort_values(['key1', 'key2'],
kind='mergesort')
assert_frame_equal(left, right)
def test_left_join_multi_index(self):
icols = ['1st', '2nd', '3rd']
def bind_cols(df):
iord = lambda a: 0 if a != a else ord(a)
f = lambda ts: ts.map(iord) - ord('a')
return (f(df['1st']) + f(df['3rd']) * 1e2 +
df['2nd'].fillna(0) * 1e4)
def run_asserts(left, right):
for sort in [False, True]:
res = left.join(right, on=icols, how='left', sort=sort)
assert len(left) < len(res) + 1
assert not res['4th'].isna().any()
assert not res['5th'].isna().any()
tm.assert_series_equal(
res['4th'], - res['5th'], check_names=False)
result = bind_cols(res.iloc[:, :-2])
tm.assert_series_equal(res['4th'], result, check_names=False)
assert result.name is None
if sort:
tm.assert_frame_equal(
res, res.sort_values(icols, kind='mergesort'))
out = merge(left, right.reset_index(), on=icols,
sort=sort, how='left')
res.index = np.arange(len(res))
tm.assert_frame_equal(out, res)
lc = list(map(chr, np.arange(ord('a'), ord('z') + 1)))
left = DataFrame(np.random.choice(lc, (5000, 2)),
columns=['1st', '3rd'])
left.insert(1, '2nd', np.random.randint(0, 1000, len(left)))
i = np.random.permutation(len(left))
right = left.iloc[i].copy()
left['4th'] = bind_cols(left)
right['5th'] = - bind_cols(right)
right.set_index(icols, inplace=True)
run_asserts(left, right)
# inject some nulls
left.loc[1::23, '1st'] = np.nan
left.loc[2::37, '2nd'] = np.nan
left.loc[3::43, '3rd'] = np.nan
left['4th'] = bind_cols(left)
i = np.random.permutation(len(left))
right = left.iloc[i, :-1]
right['5th'] = - bind_cols(right)
right.set_index(icols, inplace=True)
run_asserts(left, right)
def test_merge_right_vs_left(self):
# compare left vs right merge with multikey
for sort in [False, True]:
merged1 = self.data.merge(self.to_join, left_on=['key1', 'key2'],
right_index=True, how='left', sort=sort)
merged2 = self.to_join.merge(self.data, right_on=['key1', 'key2'],
left_index=True, how='right',
sort=sort)
merged2 = merged2.loc[:, merged1.columns]
assert_frame_equal(merged1, merged2)
def test_compress_group_combinations(self):
# ~ 40000000 possible unique groups
key1 = tm.rands_array(10, 10000)
key1 = np.tile(key1, 2)
key2 = key1[::-1]
df = DataFrame({'key1': key1, 'key2': key2,
'value1': np.random.randn(20000)})
df2 = DataFrame({'key1': key1[::2], 'key2': key2[::2],
'value2': np.random.randn(10000)})
# just to hit the label compression code path
merge(df, df2, how='outer')
def test_left_join_index_preserve_order(self):
left = DataFrame({'k1': [0, 1, 2] * 8,
'k2': ['foo', 'bar'] * 12,
'v': np.array(np.arange(24), dtype=np.int64)})
index = MultiIndex.from_tuples([(2, 'bar'), (1, 'foo')])
right = DataFrame({'v2': [5, 7]}, index=index)
result = left.join(right, on=['k1', 'k2'])
expected = left.copy()
expected['v2'] = np.nan
expected.loc[(expected.k1 == 2) & (expected.k2 == 'bar'), 'v2'] = 5
expected.loc[(expected.k1 == 1) & (expected.k2 == 'foo'), 'v2'] = 7
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(
result.sort_values(['k1', 'k2'], kind='mergesort'),
left.join(right, on=['k1', 'k2'], sort=True))
# test join with multi dtypes blocks
left = DataFrame({'k1': [0, 1, 2] * 8,
'k2': ['foo', 'bar'] * 12,
'k3': np.array([0, 1, 2] * 8, dtype=np.float32),
'v': np.array(np.arange(24), dtype=np.int32)})
index = MultiIndex.from_tuples([(2, 'bar'), (1, 'foo')])
right = DataFrame({'v2': [5, 7]}, index=index)
result = left.join(right, on=['k1', 'k2'])
expected = left.copy()
expected['v2'] = np.nan
expected.loc[(expected.k1 == 2) & (expected.k2 == 'bar'), 'v2'] = 5
expected.loc[(expected.k1 == 1) & (expected.k2 == 'foo'), 'v2'] = 7
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(
result.sort_values(['k1', 'k2'], kind='mergesort'),
left.join(right, on=['k1', 'k2'], sort=True))
# do a right join for an extra test
joined = merge(right, left, left_index=True,
right_on=['k1', 'k2'], how='right')
tm.assert_frame_equal(joined.loc[:, expected.columns], expected)
def test_left_join_index_multi_match_multiindex(self):
left = DataFrame([
['X', 'Y', 'C', 'a'],
['W', 'Y', 'C', 'e'],
['V', 'Q', 'A', 'h'],
['V', 'R', 'D', 'i'],
['X', 'Y', 'D', 'b'],
['X', 'Y', 'A', 'c'],
['W', 'Q', 'B', 'f'],
['W', 'R', 'C', 'g'],
['V', 'Y', 'C', 'j'],
['X', 'Y', 'B', 'd']],
columns=['cola', 'colb', 'colc', 'tag'],
index=[3, 2, 0, 1, 7, 6, 4, 5, 9, 8])
right = DataFrame([
['W', 'R', 'C', 0],
['W', 'Q', 'B', 3],
['W', 'Q', 'B', 8],
['X', 'Y', 'A', 1],
['X', 'Y', 'A', 4],
['X', 'Y', 'B', 5],
['X', 'Y', 'C', 6],
['X', 'Y', 'C', 9],
['X', 'Q', 'C', -6],
['X', 'R', 'C', -9],
['V', 'Y', 'C', 7],
['V', 'R', 'D', 2],
['V', 'R', 'D', -1],
['V', 'Q', 'A', -3]],
columns=['col1', 'col2', 'col3', 'val'])
right.set_index(['col1', 'col2', 'col3'], inplace=True)
result = left.join(right, on=['cola', 'colb', 'colc'], how='left')
expected = DataFrame([
['X', 'Y', 'C', 'a', 6],
['X', 'Y', 'C', 'a', 9],
['W', 'Y', 'C', 'e', nan],
['V', 'Q', 'A', 'h', -3],
['V', 'R', 'D', 'i', 2],
['V', 'R', 'D', 'i', -1],
['X', 'Y', 'D', 'b', nan],
['X', 'Y', 'A', 'c', 1],
['X', 'Y', 'A', 'c', 4],
['W', 'Q', 'B', 'f', 3],
['W', 'Q', 'B', 'f', 8],
['W', 'R', 'C', 'g', 0],
['V', 'Y', 'C', 'j', 7],
['X', 'Y', 'B', 'd', 5]],
columns=['cola', 'colb', 'colc', 'tag', 'val'],
index=[3, 3, 2, 0, 1, 1, 7, 6, 6, 4, 4, 5, 9, 8])
tm.assert_frame_equal(result, expected)
result = left.join(right, on=['cola', 'colb', 'colc'],
how='left', sort=True)
tm.assert_frame_equal(
result,
expected.sort_values(['cola', 'colb', 'colc'], kind='mergesort'))
# GH7331 - maintain left frame order in left merge
right.reset_index(inplace=True)
right.columns = left.columns[:3].tolist() + right.columns[-1:].tolist()
result = merge(left, right, how='left', on=left.columns[:-1].tolist())
expected.index = np.arange(len(expected))
tm.assert_frame_equal(result, expected)
def test_left_join_index_multi_match(self):
left = DataFrame([
['c', 0],
['b', 1],
['a', 2],
['b', 3]],
columns=['tag', 'val'],
index=[2, 0, 1, 3])
right = DataFrame([
['a', 'v'],
['c', 'w'],
['c', 'x'],
['d', 'y'],
['a', 'z'],
['c', 'r'],
['e', 'q'],
['c', 's']],
columns=['tag', 'char'])
right.set_index('tag', inplace=True)
result = left.join(right, on='tag', how='left')
expected = DataFrame([
['c', 0, 'w'],
['c', 0, 'x'],
['c', 0, 'r'],
['c', 0, 's'],
['b', 1, nan],
['a', 2, 'v'],
['a', 2, 'z'],
['b', 3, nan]],
columns=['tag', 'val', 'char'],
index=[2, 2, 2, 2, 0, 1, 1, 3])
tm.assert_frame_equal(result, expected)
result = left.join(right, on='tag', how='left', sort=True)
tm.assert_frame_equal(
result, expected.sort_values('tag', kind='mergesort'))
# GH7331 - maintain left frame order in left merge
result = merge(left, right.reset_index(), how='left', on='tag')
expected.index = np.arange(len(expected))
tm.assert_frame_equal(result, expected)
def test_left_merge_na_buglet(self):
left = DataFrame({'id': list('abcde'), 'v1': randn(5),
'v2': randn(5), 'dummy': list('abcde'),
'v3': randn(5)},
columns=['id', 'v1', 'v2', 'dummy', 'v3'])
right = DataFrame({'id': ['a', 'b', np.nan, np.nan, np.nan],
'sv3': [1.234, 5.678, np.nan, np.nan, np.nan]})
merged = merge(left, right, on='id', how='left')
rdf = right.drop(['id'], axis=1)
expected = left.join(rdf)
tm.assert_frame_equal(merged, expected)
def test_merge_na_keys(self):
data = [[1950, "A", 1.5],
[1950, "B", 1.5],
[1955, "B", 1.5],
[1960, "B", np.nan],
[1970, "B", 4.],
[1950, "C", 4.],
[1960, "C", np.nan],
[1965, "C", 3.],
[1970, "C", 4.]]
frame = DataFrame(data, columns=["year", "panel", "data"])
other_data = [[1960, 'A', np.nan],
[1970, 'A', np.nan],
[1955, 'A', np.nan],
[1965, 'A', np.nan],
[1965, 'B', np.nan],
[1955, 'C', np.nan]]
other = DataFrame(other_data, columns=['year', 'panel', 'data'])
result = frame.merge(other, how='outer')
expected = frame.fillna(-999).merge(other.fillna(-999), how='outer')
expected = expected.replace(-999, np.nan)
tm.assert_frame_equal(result, expected)
def test_join_multi_levels(self):
# GH 3662
# merge multi-levels
household = (
DataFrame(
dict(household_id=[1, 2, 3],
male=[0, 1, 0],
wealth=[196087.3, 316478.7, 294750]),
columns=['household_id', 'male', 'wealth'])
.set_index('household_id'))
portfolio = (
DataFrame(
dict(household_id=[1, 2, 2, 3, 3, 3, 4],
asset_id=["nl0000301109", "nl0000289783", "gb00b03mlx29",
"gb00b03mlx29", "lu0197800237", "nl0000289965",
np.nan],
name=["ABN Amro", "Robeco", "Royal Dutch Shell",
"Royal Dutch Shell",
"AAB Eastern Europe Equity Fund",
"Postbank BioTech Fonds", np.nan],
share=[1.0, 0.4, 0.6, 0.15, 0.6, 0.25, 1.0]),
columns=['household_id', 'asset_id', 'name', 'share'])
.set_index(['household_id', 'asset_id']))
result = household.join(portfolio, how='inner')
expected = (
DataFrame(
dict(male=[0, 1, 1, 0, 0, 0],
wealth=[196087.3, 316478.7, 316478.7,
294750.0, 294750.0, 294750.0],
name=['ABN Amro', 'Robeco', 'Royal Dutch Shell',
'Royal Dutch Shell',
'AAB Eastern Europe Equity Fund',
'Postbank BioTech Fonds'],
share=[1.00, 0.40, 0.60, 0.15, 0.60, 0.25],
household_id=[1, 2, 2, 3, 3, 3],
asset_id=['nl0000301109', 'nl0000289783', 'gb00b03mlx29',
'gb00b03mlx29', 'lu0197800237',
'nl0000289965']))
.set_index(['household_id', 'asset_id'])
.reindex(columns=['male', 'wealth', 'name', 'share']))
assert_frame_equal(result, expected)
assert_frame_equal(result, expected)
# equivalency
result2 = (merge(household.reset_index(), portfolio.reset_index(),
on=['household_id'], how='inner')
.set_index(['household_id', 'asset_id']))
assert_frame_equal(result2, expected)
result = household.join(portfolio, how='outer')
expected = (concat([
expected,
(DataFrame(
dict(share=[1.00]),
index=MultiIndex.from_tuples(
[(4, np.nan)],
names=['household_id', 'asset_id'])))
], axis=0, sort=True).reindex(columns=expected.columns))
assert_frame_equal(result, expected)
# invalid cases
household.index.name = 'foo'
def f():
household.join(portfolio, how='inner')
pytest.raises(ValueError, f)
portfolio2 = portfolio.copy()
portfolio2.index.set_names(['household_id', 'foo'])
def f():
portfolio2.join(portfolio, how='inner')
pytest.raises(ValueError, f)
def test_join_multi_levels2(self):
# some more advanced merges
# GH6360
household = (
DataFrame(
dict(household_id=[1, 2, 2, 3, 3, 3, 4],
asset_id=["nl0000301109", "nl0000301109", "gb00b03mlx29",
"gb00b03mlx29", "lu0197800237", "nl0000289965",
np.nan],
share=[1.0, 0.4, 0.6, 0.15, 0.6, 0.25, 1.0]),
columns=['household_id', 'asset_id', 'share'])
.set_index(['household_id', 'asset_id']))
log_return = DataFrame(dict(
asset_id=["gb00b03mlx29", "gb00b03mlx29",
"gb00b03mlx29", "lu0197800237", "lu0197800237"],
t=[233, 234, 235, 180, 181],
log_return=[.09604978, -.06524096, .03532373, .03025441, .036997]
)).set_index(["asset_id", "t"])
expected = (
DataFrame(dict(
household_id=[2, 2, 2, 3, 3, 3, 3, 3],
asset_id=["gb00b03mlx29", "gb00b03mlx29",
"gb00b03mlx29", "gb00b03mlx29",
"gb00b03mlx29", "gb00b03mlx29",
"lu0197800237", "lu0197800237"],
t=[233, 234, 235, 233, 234, 235, 180, 181],
share=[0.6, 0.6, 0.6, 0.15, 0.15, 0.15, 0.6, 0.6],
log_return=[.09604978, -.06524096, .03532373,
.09604978, -.06524096, .03532373,
.03025441, .036997]
))
.set_index(["household_id", "asset_id", "t"])
.reindex(columns=['share', 'log_return']))
def f():
household.join(log_return, how='inner')
pytest.raises(NotImplementedError, f)
# this is the equivalency
result = (merge(household.reset_index(), log_return.reset_index(),
on=['asset_id'], how='inner')
.set_index(['household_id', 'asset_id', 't']))
assert_frame_equal(result, expected)
expected = (
DataFrame(dict(
household_id=[1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4],
asset_id=["nl0000301109", "nl0000289783", "gb00b03mlx29",
"gb00b03mlx29", "gb00b03mlx29",
"gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29",
"lu0197800237", "lu0197800237",
"nl0000289965", None],
t=[None, None, 233, 234, 235, 233, 234,
235, 180, 181, None, None],
share=[1.0, 0.4, 0.6, 0.6, 0.6, 0.15,
0.15, 0.15, 0.6, 0.6, 0.25, 1.0],
log_return=[None, None, .09604978, -.06524096, .03532373,
.09604978, -.06524096, .03532373,
.03025441, .036997, None, None]
))
.set_index(["household_id", "asset_id", "t"]))
def f():
household.join(log_return, how='outer')
pytest.raises(NotImplementedError, f)
@pytest.mark.parametrize("klass", [None, np.asarray, Series, Index])
def test_merge_datetime_index(self, klass):
# see gh-19038
df = DataFrame([1, 2, 3],
["2016-01-01", "2017-01-01", "2018-01-01"],
columns=["a"])
df.index = pd.to_datetime(df.index)
on_vector = df.index.year
if klass is not None:
on_vector = klass(on_vector)
expected = DataFrame(
OrderedDict([
("a", [1, 2, 3]),
("key_1", [2016, 2017, 2018]),
])
)
result = df.merge(df, on=["a", on_vector], how="inner")
tm.assert_frame_equal(result, expected)
expected = DataFrame(
OrderedDict([
("key_0", [2016, 2017, 2018]),
("a_x", [1, 2, 3]),
("a_y", [1, 2, 3]),
])
)
result = df.merge(df, on=[df.index.year], how="inner")
tm.assert_frame_equal(result, expected)
class TestMergeDtypes(object):
@pytest.mark.parametrize('right_vals', [
['foo', 'bar'],
Series(['foo', 'bar']).astype('category'),
[1, 2],
[1.0, 2.0],
Series([1, 2], dtype='uint64'),
Series([1, 2], dtype='int32')
])
def test_different(self, right_vals):
left = DataFrame({'A': ['foo', 'bar'],
'B': Series(['foo', 'bar']).astype('category'),
'C': [1, 2],
'D': [1.0, 2.0],
'E': Series([1, 2], dtype='uint64'),
'F': Series([1, 2], dtype='int32')})
right = DataFrame({'A': right_vals})
# GH 9780
# We allow merging on object and categorical cols and cast
# categorical cols to object
if (is_categorical_dtype(right['A'].dtype) or
is_object_dtype(right['A'].dtype)):
result = pd.merge(left, right, on='A')
assert is_object_dtype(result.A.dtype)
# GH 9780
# We raise for merging on object col and int/float col and
# merging on categorical col and int/float col
else:
msg = ("You are trying to merge on "
"{lk_dtype} and {rk_dtype} columns. "
"If you wish to proceed you should use "
"pd.concat".format(lk_dtype=left['A'].dtype,
rk_dtype=right['A'].dtype))
with tm.assert_raises_regex(ValueError, msg):
pd.merge(left, right, on='A')
@pytest.mark.parametrize('d1', [np.int64, np.int32,
np.int16, np.int8, np.uint8])
@pytest.mark.parametrize('d2', [np.int64, np.float64,
np.float32, np.float16])
def test_join_multi_dtypes(self, d1, d2):
dtype1 = np.dtype(d1)
dtype2 = np.dtype(d2)
left = DataFrame({'k1': np.array([0, 1, 2] * 8, dtype=dtype1),
'k2': ['foo', 'bar'] * 12,
'v': np.array(np.arange(24), dtype=np.int64)})
index = MultiIndex.from_tuples([(2, 'bar'), (1, 'foo')])
right = DataFrame({'v2': np.array([5, 7], dtype=dtype2)}, index=index)
result = left.join(right, on=['k1', 'k2'])
expected = left.copy()
if dtype2.kind == 'i':
dtype2 = np.dtype('float64')
expected['v2'] = np.array(np.nan, dtype=dtype2)
expected.loc[(expected.k1 == 2) & (expected.k2 == 'bar'), 'v2'] = 5
expected.loc[(expected.k1 == 1) & (expected.k2 == 'foo'), 'v2'] = 7
tm.assert_frame_equal(result, expected)
result = left.join(right, on=['k1', 'k2'], sort=True)
expected.sort_values(['k1', 'k2'], kind='mergesort', inplace=True)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize('int_vals, float_vals, exp_vals', [
([1, 2, 3], [1.0, 2.0, 3.0], {'X': [1, 2, 3], 'Y': [1.0, 2.0, 3.0]}),
([1, 2, 3], [1.0, 3.0], {'X': [1, 3], 'Y': [1.0, 3.0]}),
([1, 2], [1.0, 2.0, 3.0], {'X': [1, 2], 'Y': [1.0, 2.0]}),
])
def test_merge_on_ints_floats(self, int_vals, float_vals, exp_vals):
# GH 16572
# Check that float column is not cast to object if
# merging on float and int columns
A = DataFrame({'X': int_vals})
B = DataFrame({'Y': float_vals})
expected = DataFrame(exp_vals)
result = A.merge(B, left_on='X', right_on='Y')
assert_frame_equal(result, expected)
result = B.merge(A, left_on='Y', right_on='X')
assert_frame_equal(result, expected[['Y', 'X']])
def test_merge_on_ints_floats_warning(self):
# GH 16572
# merge will produce a warning when merging on int and
# float columns where the float values are not exactly
# equal to their int representation
A = DataFrame({'X': [1, 2, 3]})
B = DataFrame({'Y': [1.1, 2.5, 3.0]})
expected = DataFrame({'X': [3], 'Y': [3.0]})
with tm.assert_produces_warning(UserWarning):
result = A.merge(B, left_on='X', right_on='Y')
assert_frame_equal(result, expected)
with tm.assert_produces_warning(UserWarning):
result = B.merge(A, left_on='Y', right_on='X')
assert_frame_equal(result, expected[['Y', 'X']])
# test no warning if float has NaNs
B = DataFrame({'Y': [np.nan, np.nan, 3.0]})
with tm.assert_produces_warning(None):
result = B.merge(A, left_on='Y', right_on='X')
assert_frame_equal(result, expected[['Y', 'X']])
def test_merge_incompat_infer_boolean_object(self):
# GH21119: bool + object bool merge OK
df1 = DataFrame({'key': Series([True, False], dtype=object)})
df2 = DataFrame({'key': [True, False]})
expected = DataFrame({'key': [True, False]}, dtype=object)
result = pd.merge(df1, df2, on='key')
assert_frame_equal(result, expected)
result = pd.merge(df2, df1, on='key')
assert_frame_equal(result, expected)
# with missing value
df1 = DataFrame({'key': Series([True, False, np.nan], dtype=object)})
df2 = DataFrame({'key': [True, False]})
expected = DataFrame({'key': [True, False]}, dtype=object)
result = pd.merge(df1, df2, on='key')
assert_frame_equal(result, expected)
result = pd.merge(df2, df1, on='key')
assert_frame_equal(result, expected)
@pytest.mark.parametrize('df1_vals, df2_vals', [
([0, 1, 2], ["0", "1", "2"]),
([0.0, 1.0, 2.0], ["0", "1", "2"]),
([0, 1, 2], [u"0", u"1", u"2"]),
(pd.date_range('1/1/2011', periods=2, freq='D'), ['2011-01-01',
'2011-01-02']),
(pd.date_range('1/1/2011', periods=2, freq='D'), [0, 1]),
(pd.date_range('1/1/2011', periods=2, freq='D'), [0.0, 1.0]),
(pd.date_range('20130101', periods=3),
pd.date_range('20130101', periods=3, tz='US/Eastern')),
([0, 1, 2], Series(['a', 'b', 'a']).astype('category')),
([0.0, 1.0, 2.0], Series(['a', 'b', 'a']).astype('category')),
# TODO ([0, 1], pd.Series([False, True], dtype=bool)),
([0, 1], pd.Series([False, True], dtype=object))
])
def test_merge_incompat_dtypes(self, df1_vals, df2_vals):
# GH 9780, GH 15800
# Raise a ValueError when a user tries to merge on
# dtypes that are incompatible (e.g., obj and int/float)
df1 = DataFrame({'A': df1_vals})
df2 = DataFrame({'A': df2_vals})
msg = ("You are trying to merge on {lk_dtype} and "
"{rk_dtype} columns. If you wish to proceed "
"you should use pd.concat".format(lk_dtype=df1['A'].dtype,
rk_dtype=df2['A'].dtype))
msg = re.escape(msg)
with tm.assert_raises_regex(ValueError, msg):
pd.merge(df1, df2, on=['A'])
# Check that error still raised when swapping order of dataframes
msg = ("You are trying to merge on {lk_dtype} and "
"{rk_dtype} columns. If you wish to proceed "
"you should use pd.concat".format(lk_dtype=df2['A'].dtype,
rk_dtype=df1['A'].dtype))
msg = re.escape(msg)
with tm.assert_raises_regex(ValueError, msg):
pd.merge(df2, df1, on=['A'])
@pytest.fixture
def left():
np.random.seed(1234)
return DataFrame(
{'X': Series(np.random.choice(
['foo', 'bar'],
size=(10,))).astype(CDT(['foo', 'bar'])),
'Y': np.random.choice(['one', 'two', 'three'], size=(10,))})
@pytest.fixture
def right():
np.random.seed(1234)
return DataFrame(
{'X': Series(['foo', 'bar']).astype(CDT(['foo', 'bar'])),
'Z': [1, 2]})
class TestMergeCategorical(object):
def test_identical(self, left):
# merging on the same, should preserve dtypes
merged = pd.merge(left, left, on='X')
result = merged.dtypes.sort_index()
expected = Series([CategoricalDtype(),
np.dtype('O'),
np.dtype('O')],
index=['X', 'Y_x', 'Y_y'])
assert_series_equal(result, expected)
def test_basic(self, left, right):
# we have matching Categorical dtypes in X
# so should preserve the merged column
merged = pd.merge(left, right, on='X')
result = merged.dtypes.sort_index()
expected = Series([CategoricalDtype(),
np.dtype('O'),
np.dtype('int64')],
index=['X', 'Y', 'Z'])
assert_series_equal(result, expected)
def test_merge_categorical(self):
# GH 9426
right = DataFrame({'c': {0: 'a',
1: 'b',
2: 'c',
3: 'd',
4: 'e'},
'd': {0: 'null',
1: 'null',
2: 'null',
3: 'null',
4: 'null'}})
left = DataFrame({'a': {0: 'f',
1: 'f',
2: 'f',
3: 'f',
4: 'f'},
'b': {0: 'g',
1: 'g',
2: 'g',
3: 'g',
4: 'g'}})
df = pd.merge(left, right, how='left', left_on='b', right_on='c')
# object-object
expected = df.copy()
# object-cat
# note that we propagate the category
# because we don't have any matching rows
cright = right.copy()
cright['d'] = cright['d'].astype('category')
result = pd.merge(left, cright, how='left', left_on='b', right_on='c')
expected['d'] = expected['d'].astype(CategoricalDtype(['null']))
tm.assert_frame_equal(result, expected)
# cat-object
cleft = left.copy()
cleft['b'] = cleft['b'].astype('category')
result = pd.merge(cleft, cright, how='left', left_on='b', right_on='c')
tm.assert_frame_equal(result, expected)
# cat-cat
cright = right.copy()
cright['d'] = cright['d'].astype('category')
cleft = left.copy()
cleft['b'] = cleft['b'].astype('category')
result = pd.merge(cleft, cright, how='left', left_on='b', right_on='c')
tm.assert_frame_equal(result, expected)
def tests_merge_categorical_unordered_equal(self):
# GH-19551
df1 = DataFrame({
'Foo': Categorical(['A', 'B', 'C'], categories=['A', 'B', 'C']),
'Left': ['A0', 'B0', 'C0'],
})
df2 = DataFrame({
'Foo': Categorical(['C', 'B', 'A'], categories=['C', 'B', 'A']),
'Right': ['C1', 'B1', 'A1'],
})
result = pd.merge(df1, df2, on=['Foo'])
expected = DataFrame({
'Foo': pd.Categorical(['A', 'B', 'C']),
'Left': ['A0', 'B0', 'C0'],
'Right': ['A1', 'B1', 'C1'],
})
assert_frame_equal(result, expected)
def test_other_columns(self, left, right):
# non-merge columns should preserve if possible
right = right.assign(Z=right.Z.astype('category'))
merged = pd.merge(left, right, on='X')
result = merged.dtypes.sort_index()
expected = Series([CategoricalDtype(),
np.dtype('O'),
CategoricalDtype()],
index=['X', 'Y', 'Z'])
assert_series_equal(result, expected)
# categories are preserved
assert left.X.values.is_dtype_equal(merged.X.values)
assert right.Z.values.is_dtype_equal(merged.Z.values)
@pytest.mark.parametrize(
'change', [lambda x: x,
lambda x: x.astype(CDT(['foo', 'bar', 'bah'])),
lambda x: x.astype(CDT(ordered=True))])
def test_dtype_on_merged_different(self, change, join_type, left, right):
# our merging columns, X now has 2 different dtypes
# so we must be object as a result
X = change(right.X.astype('object'))
right = right.assign(X=X)
assert is_categorical_dtype(left.X.values)
# assert not left.X.values.is_dtype_equal(right.X.values)
merged = pd.merge(left, right, on='X', how=join_type)
result = merged.dtypes.sort_index()
expected = Series([np.dtype('O'),
np.dtype('O'),
np.dtype('int64')],
index=['X', 'Y', 'Z'])
assert_series_equal(result, expected)
def test_self_join_multiple_categories(self):
# GH 16767
# non-duplicates should work with multiple categories
m = 5
df = pd.DataFrame({
'a': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] * m,
'b': ['t', 'w', 'x', 'y', 'z'] * 2 * m,
'c': [letter
for each in ['m', 'n', 'u', 'p', 'o']
for letter in [each] * 2 * m],
'd': [letter
for each in ['aa', 'bb', 'cc', 'dd', 'ee',
'ff', 'gg', 'hh', 'ii', 'jj']
for letter in [each] * m]})
# change them all to categorical variables
df = df.apply(lambda x: x.astype('category'))
# self-join should equal ourselves
result = pd.merge(df, df, on=list(df.columns))
assert_frame_equal(result, df)
def test_dtype_on_categorical_dates(self):
# GH 16900
# dates should not be coerced to ints
df = pd.DataFrame(
[[date(2001, 1, 1), 1.1],
[date(2001, 1, 2), 1.3]],
columns=['date', 'num2']
)
df['date'] = df['date'].astype('category')
df2 = pd.DataFrame(
[[date(2001, 1, 1), 1.3],
[date(2001, 1, 3), 1.4]],
columns=['date', 'num4']
)
df2['date'] = df2['date'].astype('category')
expected_outer = pd.DataFrame([
[pd.Timestamp('2001-01-01'), 1.1, 1.3],
[pd.Timestamp('2001-01-02'), 1.3, np.nan],
[pd.Timestamp('2001-01-03'), np.nan, 1.4]],
columns=['date', 'num2', 'num4']
)
result_outer = pd.merge(df, df2, how='outer', on=['date'])
assert_frame_equal(result_outer, expected_outer)
expected_inner = pd.DataFrame(
[[pd.Timestamp('2001-01-01'), 1.1, 1.3]],
columns=['date', 'num2', 'num4']
)
result_inner = pd.merge(df, df2, how='inner', on=['date'])
assert_frame_equal(result_inner, expected_inner)
@pytest.mark.parametrize('ordered', [True, False])
@pytest.mark.parametrize('category_column,categories,expected_categories',
[([False, True, True, False], [True, False],
[True, False]),
([2, 1, 1, 2], [1, 2], [1, 2]),
(['False', 'True', 'True', 'False'],
['True', 'False'], ['True', 'False'])])
def test_merging_with_bool_or_int_cateorical_column(self, category_column,
categories,
expected_categories,
ordered):
# GH 17187
# merging with a boolean/int categorical column
df1 = pd.DataFrame({'id': [1, 2, 3, 4],
'cat': category_column})
df1['cat'] = df1['cat'].astype(CDT(categories, ordered=ordered))
df2 = pd.DataFrame({'id': [2, 4], 'num': [1, 9]})
result = df1.merge(df2)
expected = pd.DataFrame({'id': [2, 4], 'cat': expected_categories,
'num': [1, 9]})
expected['cat'] = expected['cat'].astype(
CDT(categories, ordered=ordered))
assert_frame_equal(expected, result)
@pytest.fixture
def left_df():
return DataFrame({'a': [20, 10, 0]}, index=[2, 1, 0])
@pytest.fixture
def right_df():
return DataFrame({'b': [300, 100, 200]}, index=[3, 1, 2])
class TestMergeOnIndexes(object):
@pytest.mark.parametrize(
"how, sort, expected",
[('inner', False, DataFrame({'a': [20, 10],
'b': [200, 100]},
index=[2, 1])),
('inner', True, DataFrame({'a': [10, 20],
'b': [100, 200]},
index=[1, 2])),
('left', False, DataFrame({'a': [20, 10, 0],
'b': [200, 100, np.nan]},
index=[2, 1, 0])),
('left', True, DataFrame({'a': [0, 10, 20],
'b': [np.nan, 100, 200]},
index=[0, 1, 2])),
('right', False, DataFrame({'a': [np.nan, 10, 20],
'b': [300, 100, 200]},
index=[3, 1, 2])),
('right', True, DataFrame({'a': [10, 20, np.nan],
'b': [100, 200, 300]},
index=[1, 2, 3])),
('outer', False, DataFrame({'a': [0, 10, 20, np.nan],
'b': [np.nan, 100, 200, 300]},
index=[0, 1, 2, 3])),
('outer', True, DataFrame({'a': [0, 10, 20, np.nan],
'b': [np.nan, 100, 200, 300]},
index=[0, 1, 2, 3]))])
def test_merge_on_indexes(self, left_df, right_df, how, sort, expected):
result = pd.merge(left_df, right_df,
left_index=True,
right_index=True,
how=how,
sort=sort)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
'index', [
CategoricalIndex(['A', 'B'], categories=['A', 'B'], name='index_col'),
Float64Index([1.0, 2.0], name='index_col'),
Int64Index([1, 2], name='index_col'),
UInt64Index([1, 2], name='index_col'),
RangeIndex(start=0, stop=2, name='index_col'),
DatetimeIndex(["2018-01-01", "2018-01-02"], name='index_col'),
], ids=lambda x: type(x).__name__)
def test_merge_index_types(index):
# gh-20777
# assert key access is consistent across index types
left = DataFrame({"left_data": [1, 2]}, index=index)
right = DataFrame({"right_data": [1.0, 2.0]}, index=index)
result = left.merge(right, on=['index_col'])
expected = DataFrame(
OrderedDict([('left_data', [1, 2]), ('right_data', [1.0, 2.0])]),
index=index)
assert_frame_equal(result, expected)