laywerrobot/lib/python3.6/site-packages/pandas/tests/io/test_pytables.py
2020-08-27 21:55:39 +02:00

5570 lines
207 KiB
Python

import pytest
import os
import tempfile
from contextlib import contextmanager
from warnings import catch_warnings
from distutils.version import LooseVersion
import datetime
from datetime import timedelta
import numpy as np
import pandas as pd
from pandas import (Series, DataFrame, Panel, MultiIndex, Int64Index,
RangeIndex, Categorical, bdate_range,
date_range, timedelta_range, Index, DatetimeIndex,
isna, compat, concat, Timestamp, _np_version_under1p15)
import pandas.util.testing as tm
import pandas.util._test_decorators as td
from pandas.util.testing import (assert_panel_equal,
assert_frame_equal,
assert_series_equal,
set_timezone)
from pandas.compat import (is_platform_windows, is_platform_little_endian,
PY35, PY36, BytesIO, text_type,
range, lrange, u)
from pandas.io.formats.printing import pprint_thing
from pandas.core.dtypes.common import is_categorical_dtype
tables = pytest.importorskip('tables')
from pandas.io import pytables as pytables # noqa:E402
from pandas.io.pytables import (TableIterator, # noqa:E402
HDFStore, get_store, Term, read_hdf,
PossibleDataLossError, ClosedFileError)
_default_compressor = ('blosc' if LooseVersion(tables.__version__) >=
LooseVersion('2.2') else 'zlib')
# contextmanager to ensure the file cleanup
def safe_remove(path):
if path is not None:
try:
os.remove(path)
except:
pass
def safe_close(store):
try:
if store is not None:
store.close()
except:
pass
def create_tempfile(path):
""" create an unopened named temporary file """
return os.path.join(tempfile.gettempdir(), path)
@contextmanager
def ensure_clean_store(path, mode='a', complevel=None, complib=None,
fletcher32=False):
try:
# put in the temporary path if we don't have one already
if not len(os.path.dirname(path)):
path = create_tempfile(path)
store = HDFStore(path, mode=mode, complevel=complevel,
complib=complib, fletcher32=False)
yield store
finally:
safe_close(store)
if mode == 'w' or mode == 'a':
safe_remove(path)
@contextmanager
def ensure_clean_path(path):
"""
return essentially a named temporary file that is not opened
and deleted on existing; if path is a list, then create and
return list of filenames
"""
try:
if isinstance(path, list):
filenames = [create_tempfile(p) for p in path]
yield filenames
else:
filenames = [create_tempfile(path)]
yield filenames[0]
finally:
for f in filenames:
safe_remove(f)
# set these parameters so we don't have file sharing
tables.parameters.MAX_NUMEXPR_THREADS = 1
tables.parameters.MAX_BLOSC_THREADS = 1
tables.parameters.MAX_THREADS = 1
def _maybe_remove(store, key):
"""For tests using tables, try removing the table to be sure there is
no content from previous tests using the same table name."""
try:
store.remove(key)
except:
pass
class Base(object):
@classmethod
def setup_class(cls):
# Pytables 3.0.0 deprecates lots of things
tm.reset_testing_mode()
@classmethod
def teardown_class(cls):
# Pytables 3.0.0 deprecates lots of things
tm.set_testing_mode()
def setup_method(self, method):
self.path = 'tmp.__%s__.h5' % tm.rands(10)
def teardown_method(self, method):
pass
@pytest.mark.single
class TestHDFStore(Base):
def test_factory_fun(self):
path = create_tempfile(self.path)
try:
with catch_warnings(record=True):
with get_store(path) as tbl:
raise ValueError('blah')
except ValueError:
pass
finally:
safe_remove(path)
try:
with catch_warnings(record=True):
with get_store(path) as tbl:
tbl['a'] = tm.makeDataFrame()
with catch_warnings(record=True):
with get_store(path) as tbl:
assert len(tbl) == 1
assert type(tbl['a']) == DataFrame
finally:
safe_remove(self.path)
def test_context(self):
path = create_tempfile(self.path)
try:
with HDFStore(path) as tbl:
raise ValueError('blah')
except ValueError:
pass
finally:
safe_remove(path)
try:
with HDFStore(path) as tbl:
tbl['a'] = tm.makeDataFrame()
with HDFStore(path) as tbl:
assert len(tbl) == 1
assert type(tbl['a']) == DataFrame
finally:
safe_remove(path)
def test_conv_read_write(self):
path = create_tempfile(self.path)
try:
def roundtrip(key, obj, **kwargs):
obj.to_hdf(path, key, **kwargs)
return read_hdf(path, key)
o = tm.makeTimeSeries()
assert_series_equal(o, roundtrip('series', o))
o = tm.makeStringSeries()
assert_series_equal(o, roundtrip('string_series', o))
o = tm.makeDataFrame()
assert_frame_equal(o, roundtrip('frame', o))
with catch_warnings(record=True):
o = tm.makePanel()
assert_panel_equal(o, roundtrip('panel', o))
# table
df = DataFrame(dict(A=lrange(5), B=lrange(5)))
df.to_hdf(path, 'table', append=True)
result = read_hdf(path, 'table', where=['index>2'])
assert_frame_equal(df[df.index > 2], result)
finally:
safe_remove(path)
def test_long_strings(self):
# GH6166
# unconversion of long strings was being chopped in earlier
# versions of numpy < 1.7.2
df = DataFrame({'a': tm.rands_array(100, size=10)},
index=tm.rands_array(100, size=10))
with ensure_clean_store(self.path) as store:
store.append('df', df, data_columns=['a'])
result = store.select('df')
assert_frame_equal(df, result)
def test_api(self):
# GH4584
# API issue when to_hdf doesn't acdept append AND format args
with ensure_clean_path(self.path) as path:
df = tm.makeDataFrame()
df.iloc[:10].to_hdf(path, 'df', append=True, format='table')
df.iloc[10:].to_hdf(path, 'df', append=True, format='table')
assert_frame_equal(read_hdf(path, 'df'), df)
# append to False
df.iloc[:10].to_hdf(path, 'df', append=False, format='table')
df.iloc[10:].to_hdf(path, 'df', append=True, format='table')
assert_frame_equal(read_hdf(path, 'df'), df)
with ensure_clean_path(self.path) as path:
df = tm.makeDataFrame()
df.iloc[:10].to_hdf(path, 'df', append=True)
df.iloc[10:].to_hdf(path, 'df', append=True, format='table')
assert_frame_equal(read_hdf(path, 'df'), df)
# append to False
df.iloc[:10].to_hdf(path, 'df', append=False, format='table')
df.iloc[10:].to_hdf(path, 'df', append=True)
assert_frame_equal(read_hdf(path, 'df'), df)
with ensure_clean_path(self.path) as path:
df = tm.makeDataFrame()
df.to_hdf(path, 'df', append=False, format='fixed')
assert_frame_equal(read_hdf(path, 'df'), df)
df.to_hdf(path, 'df', append=False, format='f')
assert_frame_equal(read_hdf(path, 'df'), df)
df.to_hdf(path, 'df', append=False)
assert_frame_equal(read_hdf(path, 'df'), df)
df.to_hdf(path, 'df')
assert_frame_equal(read_hdf(path, 'df'), df)
with ensure_clean_store(self.path) as store:
path = store._path
df = tm.makeDataFrame()
_maybe_remove(store, 'df')
store.append('df', df.iloc[:10], append=True, format='table')
store.append('df', df.iloc[10:], append=True, format='table')
assert_frame_equal(store.select('df'), df)
# append to False
_maybe_remove(store, 'df')
store.append('df', df.iloc[:10], append=False, format='table')
store.append('df', df.iloc[10:], append=True, format='table')
assert_frame_equal(store.select('df'), df)
# formats
_maybe_remove(store, 'df')
store.append('df', df.iloc[:10], append=False, format='table')
store.append('df', df.iloc[10:], append=True, format='table')
assert_frame_equal(store.select('df'), df)
_maybe_remove(store, 'df')
store.append('df', df.iloc[:10], append=False, format='table')
store.append('df', df.iloc[10:], append=True, format=None)
assert_frame_equal(store.select('df'), df)
with ensure_clean_path(self.path) as path:
# invalid
df = tm.makeDataFrame()
pytest.raises(ValueError, df.to_hdf, path,
'df', append=True, format='f')
pytest.raises(ValueError, df.to_hdf, path,
'df', append=True, format='fixed')
pytest.raises(TypeError, df.to_hdf, path,
'df', append=True, format='foo')
pytest.raises(TypeError, df.to_hdf, path,
'df', append=False, format='bar')
# File path doesn't exist
path = ""
pytest.raises(compat.FileNotFoundError,
read_hdf, path, 'df')
def test_api_default_format(self):
# default_format option
with ensure_clean_store(self.path) as store:
df = tm.makeDataFrame()
pd.set_option('io.hdf.default_format', 'fixed')
_maybe_remove(store, 'df')
store.put('df', df)
assert not store.get_storer('df').is_table
pytest.raises(ValueError, store.append, 'df2', df)
pd.set_option('io.hdf.default_format', 'table')
_maybe_remove(store, 'df')
store.put('df', df)
assert store.get_storer('df').is_table
_maybe_remove(store, 'df2')
store.append('df2', df)
assert store.get_storer('df').is_table
pd.set_option('io.hdf.default_format', None)
with ensure_clean_path(self.path) as path:
df = tm.makeDataFrame()
pd.set_option('io.hdf.default_format', 'fixed')
df.to_hdf(path, 'df')
with HDFStore(path) as store:
assert not store.get_storer('df').is_table
pytest.raises(ValueError, df.to_hdf, path, 'df2', append=True)
pd.set_option('io.hdf.default_format', 'table')
df.to_hdf(path, 'df3')
with HDFStore(path) as store:
assert store.get_storer('df3').is_table
df.to_hdf(path, 'df4', append=True)
with HDFStore(path) as store:
assert store.get_storer('df4').is_table
pd.set_option('io.hdf.default_format', None)
def test_keys(self):
with ensure_clean_store(self.path) as store:
store['a'] = tm.makeTimeSeries()
store['b'] = tm.makeStringSeries()
store['c'] = tm.makeDataFrame()
with catch_warnings(record=True):
store['d'] = tm.makePanel()
store['foo/bar'] = tm.makePanel()
assert len(store) == 5
expected = set(['/a', '/b', '/c', '/d', '/foo/bar'])
assert set(store.keys()) == expected
assert set(store) == expected
def test_keys_ignore_hdf_softlink(self):
# GH 20523
# Puts a softlink into HDF file and rereads
with ensure_clean_store(self.path) as store:
df = DataFrame(dict(A=lrange(5), B=lrange(5)))
store.put("df", df)
assert store.keys() == ["/df"]
store._handle.create_soft_link(store._handle.root, "symlink", "df")
# Should ignore the softlink
assert store.keys() == ["/df"]
def test_iter_empty(self):
with ensure_clean_store(self.path) as store:
# GH 12221
assert list(store) == []
def test_repr(self):
with ensure_clean_store(self.path) as store:
repr(store)
store.info()
store['a'] = tm.makeTimeSeries()
store['b'] = tm.makeStringSeries()
store['c'] = tm.makeDataFrame()
with catch_warnings(record=True):
store['d'] = tm.makePanel()
store['foo/bar'] = tm.makePanel()
store.append('e', tm.makePanel())
df = tm.makeDataFrame()
df['obj1'] = 'foo'
df['obj2'] = 'bar'
df['bool1'] = df['A'] > 0
df['bool2'] = df['B'] > 0
df['bool3'] = True
df['int1'] = 1
df['int2'] = 2
df['timestamp1'] = Timestamp('20010102')
df['timestamp2'] = Timestamp('20010103')
df['datetime1'] = datetime.datetime(2001, 1, 2, 0, 0)
df['datetime2'] = datetime.datetime(2001, 1, 3, 0, 0)
df.loc[3:6, ['obj1']] = np.nan
df = df._consolidate()._convert(datetime=True)
# PerformanceWarning
with catch_warnings(record=True):
store['df'] = df
# make a random group in hdf space
store._handle.create_group(store._handle.root, 'bah')
assert store.filename in repr(store)
assert store.filename in str(store)
store.info()
# storers
with ensure_clean_store(self.path) as store:
df = tm.makeDataFrame()
store.append('df', df)
s = store.get_storer('df')
repr(s)
str(s)
def test_contains(self):
with ensure_clean_store(self.path) as store:
store['a'] = tm.makeTimeSeries()
store['b'] = tm.makeDataFrame()
store['foo/bar'] = tm.makeDataFrame()
assert 'a' in store
assert 'b' in store
assert 'c' not in store
assert 'foo/bar' in store
assert '/foo/bar' in store
assert '/foo/b' not in store
assert 'bar' not in store
# gh-2694: tables.NaturalNameWarning
with catch_warnings(record=True):
store['node())'] = tm.makeDataFrame()
assert 'node())' in store
def test_versioning(self):
with ensure_clean_store(self.path) as store:
store['a'] = tm.makeTimeSeries()
store['b'] = tm.makeDataFrame()
df = tm.makeTimeDataFrame()
_maybe_remove(store, 'df1')
store.append('df1', df[:10])
store.append('df1', df[10:])
assert store.root.a._v_attrs.pandas_version == '0.15.2'
assert store.root.b._v_attrs.pandas_version == '0.15.2'
assert store.root.df1._v_attrs.pandas_version == '0.15.2'
# write a file and wipe its versioning
_maybe_remove(store, 'df2')
store.append('df2', df)
# this is an error because its table_type is appendable, but no
# version info
store.get_node('df2')._v_attrs.pandas_version = None
pytest.raises(Exception, store.select, 'df2')
def test_mode(self):
df = tm.makeTimeDataFrame()
def check(mode):
with ensure_clean_path(self.path) as path:
# constructor
if mode in ['r', 'r+']:
pytest.raises(IOError, HDFStore, path, mode=mode)
else:
store = HDFStore(path, mode=mode)
assert store._handle.mode == mode
store.close()
with ensure_clean_path(self.path) as path:
# context
if mode in ['r', 'r+']:
def f():
with HDFStore(path, mode=mode) as store: # noqa
pass
pytest.raises(IOError, f)
else:
with HDFStore(path, mode=mode) as store:
assert store._handle.mode == mode
with ensure_clean_path(self.path) as path:
# conv write
if mode in ['r', 'r+']:
pytest.raises(IOError, df.to_hdf,
path, 'df', mode=mode)
df.to_hdf(path, 'df', mode='w')
else:
df.to_hdf(path, 'df', mode=mode)
# conv read
if mode in ['w']:
pytest.raises(ValueError, read_hdf,
path, 'df', mode=mode)
else:
result = read_hdf(path, 'df', mode=mode)
assert_frame_equal(result, df)
def check_default_mode():
# read_hdf uses default mode
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', mode='w')
result = read_hdf(path, 'df')
assert_frame_equal(result, df)
check('r')
check('r+')
check('a')
check('w')
check_default_mode()
def test_reopen_handle(self):
with ensure_clean_path(self.path) as path:
store = HDFStore(path, mode='a')
store['a'] = tm.makeTimeSeries()
# invalid mode change
pytest.raises(PossibleDataLossError, store.open, 'w')
store.close()
assert not store.is_open
# truncation ok here
store.open('w')
assert store.is_open
assert len(store) == 0
store.close()
assert not store.is_open
store = HDFStore(path, mode='a')
store['a'] = tm.makeTimeSeries()
# reopen as read
store.open('r')
assert store.is_open
assert len(store) == 1
assert store._mode == 'r'
store.close()
assert not store.is_open
# reopen as append
store.open('a')
assert store.is_open
assert len(store) == 1
assert store._mode == 'a'
store.close()
assert not store.is_open
# reopen as append (again)
store.open('a')
assert store.is_open
assert len(store) == 1
assert store._mode == 'a'
store.close()
assert not store.is_open
def test_open_args(self):
with ensure_clean_path(self.path) as path:
df = tm.makeDataFrame()
# create an in memory store
store = HDFStore(path, mode='a', driver='H5FD_CORE',
driver_core_backing_store=0)
store['df'] = df
store.append('df2', df)
tm.assert_frame_equal(store['df'], df)
tm.assert_frame_equal(store['df2'], df)
store.close()
# the file should not have actually been written
assert not os.path.exists(path)
def test_flush(self):
with ensure_clean_store(self.path) as store:
store['a'] = tm.makeTimeSeries()
store.flush()
store.flush(fsync=True)
def test_get(self):
with ensure_clean_store(self.path) as store:
store['a'] = tm.makeTimeSeries()
left = store.get('a')
right = store['a']
tm.assert_series_equal(left, right)
left = store.get('/a')
right = store['/a']
tm.assert_series_equal(left, right)
pytest.raises(KeyError, store.get, 'b')
def test_getattr(self):
with ensure_clean_store(self.path) as store:
s = tm.makeTimeSeries()
store['a'] = s
# test attribute access
result = store.a
tm.assert_series_equal(result, s)
result = getattr(store, 'a')
tm.assert_series_equal(result, s)
df = tm.makeTimeDataFrame()
store['df'] = df
result = store.df
tm.assert_frame_equal(result, df)
# errors
pytest.raises(AttributeError, getattr, store, 'd')
for x in ['mode', 'path', 'handle', 'complib']:
pytest.raises(AttributeError, getattr, store, x)
# not stores
for x in ['mode', 'path', 'handle', 'complib']:
getattr(store, "_%s" % x)
def test_put(self):
with ensure_clean_store(self.path) as store:
ts = tm.makeTimeSeries()
df = tm.makeTimeDataFrame()
store['a'] = ts
store['b'] = df[:10]
store['foo/bar/bah'] = df[:10]
store['foo'] = df[:10]
store['/foo'] = df[:10]
store.put('c', df[:10], format='table')
# not OK, not a table
pytest.raises(
ValueError, store.put, 'b', df[10:], append=True)
# node does not currently exist, test _is_table_type returns False
# in this case
# _maybe_remove(store, 'f')
# pytest.raises(ValueError, store.put, 'f', df[10:],
# append=True)
# can't put to a table (use append instead)
pytest.raises(ValueError, store.put, 'c', df[10:], append=True)
# overwrite table
store.put('c', df[:10], format='table', append=False)
tm.assert_frame_equal(df[:10], store['c'])
def test_put_string_index(self):
with ensure_clean_store(self.path) as store:
index = Index(
["I am a very long string index: %s" % i for i in range(20)])
s = Series(np.arange(20), index=index)
df = DataFrame({'A': s, 'B': s})
store['a'] = s
tm.assert_series_equal(store['a'], s)
store['b'] = df
tm.assert_frame_equal(store['b'], df)
# mixed length
index = Index(['abcdefghijklmnopqrstuvwxyz1234567890'] +
["I am a very long string index: %s" % i
for i in range(20)])
s = Series(np.arange(21), index=index)
df = DataFrame({'A': s, 'B': s})
store['a'] = s
tm.assert_series_equal(store['a'], s)
store['b'] = df
tm.assert_frame_equal(store['b'], df)
def test_put_compression(self):
with ensure_clean_store(self.path) as store:
df = tm.makeTimeDataFrame()
store.put('c', df, format='table', complib='zlib')
tm.assert_frame_equal(store['c'], df)
# can't compress if format='fixed'
pytest.raises(ValueError, store.put, 'b', df,
format='fixed', complib='zlib')
@td.skip_if_windows_python_3
def test_put_compression_blosc(self):
df = tm.makeTimeDataFrame()
with ensure_clean_store(self.path) as store:
# can't compress if format='fixed'
pytest.raises(ValueError, store.put, 'b', df,
format='fixed', complib='blosc')
store.put('c', df, format='table', complib='blosc')
tm.assert_frame_equal(store['c'], df)
def test_complibs_default_settings(self):
# GH15943
df = tm.makeDataFrame()
# Set complevel and check if complib is automatically set to
# default value
with ensure_clean_path(self.path) as tmpfile:
df.to_hdf(tmpfile, 'df', complevel=9)
result = pd.read_hdf(tmpfile, 'df')
tm.assert_frame_equal(result, df)
with tables.open_file(tmpfile, mode='r') as h5file:
for node in h5file.walk_nodes(where='/df', classname='Leaf'):
assert node.filters.complevel == 9
assert node.filters.complib == 'zlib'
# Set complib and check to see if compression is disabled
with ensure_clean_path(self.path) as tmpfile:
df.to_hdf(tmpfile, 'df', complib='zlib')
result = pd.read_hdf(tmpfile, 'df')
tm.assert_frame_equal(result, df)
with tables.open_file(tmpfile, mode='r') as h5file:
for node in h5file.walk_nodes(where='/df', classname='Leaf'):
assert node.filters.complevel == 0
assert node.filters.complib is None
# Check if not setting complib or complevel results in no compression
with ensure_clean_path(self.path) as tmpfile:
df.to_hdf(tmpfile, 'df')
result = pd.read_hdf(tmpfile, 'df')
tm.assert_frame_equal(result, df)
with tables.open_file(tmpfile, mode='r') as h5file:
for node in h5file.walk_nodes(where='/df', classname='Leaf'):
assert node.filters.complevel == 0
assert node.filters.complib is None
# Check if file-defaults can be overridden on a per table basis
with ensure_clean_path(self.path) as tmpfile:
store = pd.HDFStore(tmpfile)
store.append('dfc', df, complevel=9, complib='blosc')
store.append('df', df)
store.close()
with tables.open_file(tmpfile, mode='r') as h5file:
for node in h5file.walk_nodes(where='/df', classname='Leaf'):
assert node.filters.complevel == 0
assert node.filters.complib is None
for node in h5file.walk_nodes(where='/dfc', classname='Leaf'):
assert node.filters.complevel == 9
assert node.filters.complib == 'blosc'
def test_complibs(self):
# GH14478
df = tm.makeDataFrame()
# Building list of all complibs and complevels tuples
all_complibs = tables.filters.all_complibs
# Remove lzo if its not available on this platform
if not tables.which_lib_version('lzo'):
all_complibs.remove('lzo')
# Remove bzip2 if its not available on this platform
if not tables.which_lib_version("bzip2"):
all_complibs.remove("bzip2")
all_levels = range(0, 10)
all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels]
for (lib, lvl) in all_tests:
with ensure_clean_path(self.path) as tmpfile:
gname = 'foo'
# Write and read file to see if data is consistent
df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl)
result = pd.read_hdf(tmpfile, gname)
tm.assert_frame_equal(result, df)
# Open file and check metadata
# for correct amount of compression
h5table = tables.open_file(tmpfile, mode='r')
for node in h5table.walk_nodes(where='/' + gname,
classname='Leaf'):
assert node.filters.complevel == lvl
if lvl == 0:
assert node.filters.complib is None
else:
assert node.filters.complib == lib
h5table.close()
def test_put_integer(self):
# non-date, non-string index
df = DataFrame(np.random.randn(50, 100))
self._check_roundtrip(df, tm.assert_frame_equal)
def test_put_mixed_type(self):
df = tm.makeTimeDataFrame()
df['obj1'] = 'foo'
df['obj2'] = 'bar'
df['bool1'] = df['A'] > 0
df['bool2'] = df['B'] > 0
df['bool3'] = True
df['int1'] = 1
df['int2'] = 2
df['timestamp1'] = Timestamp('20010102')
df['timestamp2'] = Timestamp('20010103')
df['datetime1'] = datetime.datetime(2001, 1, 2, 0, 0)
df['datetime2'] = datetime.datetime(2001, 1, 3, 0, 0)
df.loc[3:6, ['obj1']] = np.nan
df = df._consolidate()._convert(datetime=True)
with ensure_clean_store(self.path) as store:
_maybe_remove(store, 'df')
# PerformanceWarning
with catch_warnings(record=True):
store.put('df', df)
expected = store.get('df')
tm.assert_frame_equal(expected, df)
def test_append(self):
with ensure_clean_store(self.path) as store:
# this is allowed by almost always don't want to do it
# tables.NaturalNameWarning):
with catch_warnings(record=True):
df = tm.makeTimeDataFrame()
_maybe_remove(store, 'df1')
store.append('df1', df[:10])
store.append('df1', df[10:])
tm.assert_frame_equal(store['df1'], df)
_maybe_remove(store, 'df2')
store.put('df2', df[:10], format='table')
store.append('df2', df[10:])
tm.assert_frame_equal(store['df2'], df)
_maybe_remove(store, 'df3')
store.append('/df3', df[:10])
store.append('/df3', df[10:])
tm.assert_frame_equal(store['df3'], df)
# this is allowed by almost always don't want to do it
# tables.NaturalNameWarning
_maybe_remove(store, '/df3 foo')
store.append('/df3 foo', df[:10])
store.append('/df3 foo', df[10:])
tm.assert_frame_equal(store['df3 foo'], df)
# panel
wp = tm.makePanel()
_maybe_remove(store, 'wp1')
store.append('wp1', wp.iloc[:, :10, :])
store.append('wp1', wp.iloc[:, 10:, :])
assert_panel_equal(store['wp1'], wp)
# test using differt order of items on the non-index axes
_maybe_remove(store, 'wp1')
wp_append1 = wp.iloc[:, :10, :]
store.append('wp1', wp_append1)
wp_append2 = wp.iloc[:, 10:, :].reindex(items=wp.items[::-1])
store.append('wp1', wp_append2)
assert_panel_equal(store['wp1'], wp)
# dtype issues - mizxed type in a single object column
df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]])
df['mixed_column'] = 'testing'
df.loc[2, 'mixed_column'] = np.nan
_maybe_remove(store, 'df')
store.append('df', df)
tm.assert_frame_equal(store['df'], df)
# uints - test storage of uints
uint_data = DataFrame({
'u08': Series(np.random.randint(0, high=255, size=5),
dtype=np.uint8),
'u16': Series(np.random.randint(0, high=65535, size=5),
dtype=np.uint16),
'u32': Series(np.random.randint(0, high=2**30, size=5),
dtype=np.uint32),
'u64': Series([2**58, 2**59, 2**60, 2**61, 2**62],
dtype=np.uint64)}, index=np.arange(5))
_maybe_remove(store, 'uints')
store.append('uints', uint_data)
tm.assert_frame_equal(store['uints'], uint_data)
# uints - test storage of uints in indexable columns
_maybe_remove(store, 'uints')
# 64-bit indices not yet supported
store.append('uints', uint_data, data_columns=[
'u08', 'u16', 'u32'])
tm.assert_frame_equal(store['uints'], uint_data)
def test_append_series(self):
with ensure_clean_store(self.path) as store:
# basic
ss = tm.makeStringSeries()
ts = tm.makeTimeSeries()
ns = Series(np.arange(100))
store.append('ss', ss)
result = store['ss']
tm.assert_series_equal(result, ss)
assert result.name is None
store.append('ts', ts)
result = store['ts']
tm.assert_series_equal(result, ts)
assert result.name is None
ns.name = 'foo'
store.append('ns', ns)
result = store['ns']
tm.assert_series_equal(result, ns)
assert result.name == ns.name
# select on the values
expected = ns[ns > 60]
result = store.select('ns', 'foo>60')
tm.assert_series_equal(result, expected)
# select on the index and values
expected = ns[(ns > 70) & (ns.index < 90)]
result = store.select('ns', 'foo>70 and index<90')
tm.assert_series_equal(result, expected)
# multi-index
mi = DataFrame(np.random.randn(5, 1), columns=['A'])
mi['B'] = np.arange(len(mi))
mi['C'] = 'foo'
mi.loc[3:5, 'C'] = 'bar'
mi.set_index(['C', 'B'], inplace=True)
s = mi.stack()
s.index = s.index.droplevel(2)
store.append('mi', s)
tm.assert_series_equal(store['mi'], s)
def test_store_index_types(self):
# GH5386
# test storing various index types
with ensure_clean_store(self.path) as store:
def check(format, index):
df = DataFrame(np.random.randn(10, 2), columns=list('AB'))
df.index = index(len(df))
_maybe_remove(store, 'df')
store.put('df', df, format=format)
assert_frame_equal(df, store['df'])
for index in [tm.makeFloatIndex, tm.makeStringIndex,
tm.makeIntIndex, tm.makeDateIndex]:
check('table', index)
check('fixed', index)
# period index currently broken for table
# seee GH7796 FIXME
check('fixed', tm.makePeriodIndex)
# check('table',tm.makePeriodIndex)
# unicode
index = tm.makeUnicodeIndex
if compat.PY3:
check('table', index)
check('fixed', index)
else:
# only support for fixed types (and they have a perf warning)
pytest.raises(TypeError, check, 'table', index)
# PerformanceWarning
with catch_warnings(record=True):
check('fixed', index)
@pytest.mark.skipif(not is_platform_little_endian(),
reason="reason platform is not little endian")
def test_encoding(self):
with ensure_clean_store(self.path) as store:
df = DataFrame(dict(A='foo', B='bar'), index=range(5))
df.loc[2, 'A'] = np.nan
df.loc[3, 'B'] = np.nan
_maybe_remove(store, 'df')
store.append('df', df, encoding='ascii')
tm.assert_frame_equal(store['df'], df)
expected = df.reindex(columns=['A'])
result = store.select('df', Term('columns=A', encoding='ascii'))
tm.assert_frame_equal(result, expected)
def test_latin_encoding(self):
if compat.PY2:
tm.assert_raises_regex(
TypeError, r'\[unicode\] is not implemented as a table column')
return
values = [[b'E\xc9, 17', b'', b'a', b'b', b'c'],
[b'E\xc9, 17', b'a', b'b', b'c'],
[b'EE, 17', b'', b'a', b'b', b'c'],
[b'E\xc9, 17', b'\xf8\xfc', b'a', b'b', b'c'],
[b'', b'a', b'b', b'c'],
[b'\xf8\xfc', b'a', b'b', b'c'],
[b'A\xf8\xfc', b'', b'a', b'b', b'c'],
[np.nan, b'', b'b', b'c'],
[b'A\xf8\xfc', np.nan, b'', b'b', b'c']]
def _try_decode(x, encoding='latin-1'):
try:
return x.decode(encoding)
except AttributeError:
return x
# not sure how to remove latin-1 from code in python 2 and 3
values = [[_try_decode(x) for x in y] for y in values]
examples = []
for dtype in ['category', object]:
for val in values:
examples.append(pd.Series(val, dtype=dtype))
def roundtrip(s, key='data', encoding='latin-1', nan_rep=''):
with ensure_clean_path(self.path) as store:
s.to_hdf(store, key, format='table', encoding=encoding,
nan_rep=nan_rep)
retr = read_hdf(store, key)
s_nan = s.replace(nan_rep, np.nan)
if is_categorical_dtype(s_nan):
assert is_categorical_dtype(retr)
assert_series_equal(s_nan, retr, check_dtype=False,
check_categorical=False)
else:
assert_series_equal(s_nan, retr)
for s in examples:
roundtrip(s)
# fails:
# for x in examples:
# roundtrip(s, nan_rep=b'\xf8\xfc')
def test_append_some_nans(self):
with ensure_clean_store(self.path) as store:
df = DataFrame({'A': Series(np.random.randn(20)).astype('int32'),
'A1': np.random.randn(20),
'A2': np.random.randn(20),
'B': 'foo', 'C': 'bar',
'D': Timestamp("20010101"),
'E': datetime.datetime(2001, 1, 2, 0, 0)},
index=np.arange(20))
# some nans
_maybe_remove(store, 'df1')
df.loc[0:15, ['A1', 'B', 'D', 'E']] = np.nan
store.append('df1', df[:10])
store.append('df1', df[10:])
tm.assert_frame_equal(store['df1'], df)
# first column
df1 = df.copy()
df1.loc[:, 'A1'] = np.nan
_maybe_remove(store, 'df1')
store.append('df1', df1[:10])
store.append('df1', df1[10:])
tm.assert_frame_equal(store['df1'], df1)
# 2nd column
df2 = df.copy()
df2.loc[:, 'A2'] = np.nan
_maybe_remove(store, 'df2')
store.append('df2', df2[:10])
store.append('df2', df2[10:])
tm.assert_frame_equal(store['df2'], df2)
# datetimes
df3 = df.copy()
df3.loc[:, 'E'] = np.nan
_maybe_remove(store, 'df3')
store.append('df3', df3[:10])
store.append('df3', df3[10:])
tm.assert_frame_equal(store['df3'], df3)
def test_append_all_nans(self):
with ensure_clean_store(self.path) as store:
df = DataFrame({'A1': np.random.randn(20),
'A2': np.random.randn(20)},
index=np.arange(20))
df.loc[0:15, :] = np.nan
# nan some entire rows (dropna=True)
_maybe_remove(store, 'df')
store.append('df', df[:10], dropna=True)
store.append('df', df[10:], dropna=True)
tm.assert_frame_equal(store['df'], df[-4:])
# nan some entire rows (dropna=False)
_maybe_remove(store, 'df2')
store.append('df2', df[:10], dropna=False)
store.append('df2', df[10:], dropna=False)
tm.assert_frame_equal(store['df2'], df)
# tests the option io.hdf.dropna_table
pd.set_option('io.hdf.dropna_table', False)
_maybe_remove(store, 'df3')
store.append('df3', df[:10])
store.append('df3', df[10:])
tm.assert_frame_equal(store['df3'], df)
pd.set_option('io.hdf.dropna_table', True)
_maybe_remove(store, 'df4')
store.append('df4', df[:10])
store.append('df4', df[10:])
tm.assert_frame_equal(store['df4'], df[-4:])
# nan some entire rows (string are still written!)
df = DataFrame({'A1': np.random.randn(20),
'A2': np.random.randn(20),
'B': 'foo', 'C': 'bar'},
index=np.arange(20))
df.loc[0:15, :] = np.nan
_maybe_remove(store, 'df')
store.append('df', df[:10], dropna=True)
store.append('df', df[10:], dropna=True)
tm.assert_frame_equal(store['df'], df)
_maybe_remove(store, 'df2')
store.append('df2', df[:10], dropna=False)
store.append('df2', df[10:], dropna=False)
tm.assert_frame_equal(store['df2'], df)
# nan some entire rows (but since we have dates they are still
# written!)
df = DataFrame({'A1': np.random.randn(20),
'A2': np.random.randn(20),
'B': 'foo', 'C': 'bar',
'D': Timestamp("20010101"),
'E': datetime.datetime(2001, 1, 2, 0, 0)},
index=np.arange(20))
df.loc[0:15, :] = np.nan
_maybe_remove(store, 'df')
store.append('df', df[:10], dropna=True)
store.append('df', df[10:], dropna=True)
tm.assert_frame_equal(store['df'], df)
_maybe_remove(store, 'df2')
store.append('df2', df[:10], dropna=False)
store.append('df2', df[10:], dropna=False)
tm.assert_frame_equal(store['df2'], df)
# Test to make sure defaults are to not drop.
# Corresponding to Issue 9382
df_with_missing = DataFrame(
{'col1': [0, np.nan, 2], 'col2': [1, np.nan, np.nan]})
with ensure_clean_path(self.path) as path:
df_with_missing.to_hdf(path, 'df_with_missing', format='table')
reloaded = read_hdf(path, 'df_with_missing')
tm.assert_frame_equal(df_with_missing, reloaded)
matrix = [[[np.nan, np.nan, np.nan], [1, np.nan, np.nan]],
[[np.nan, np.nan, np.nan], [np.nan, 5, 6]],
[[np.nan, np.nan, np.nan], [np.nan, 3, np.nan]]]
with catch_warnings(record=True):
panel_with_missing = Panel(matrix,
items=['Item1', 'Item2', 'Item3'],
major_axis=[1, 2],
minor_axis=['A', 'B', 'C'])
with ensure_clean_path(self.path) as path:
panel_with_missing.to_hdf(
path, 'panel_with_missing', format='table')
reloaded_panel = read_hdf(path, 'panel_with_missing')
tm.assert_panel_equal(panel_with_missing, reloaded_panel)
def test_append_frame_column_oriented(self):
with ensure_clean_store(self.path) as store:
# column oriented
df = tm.makeTimeDataFrame()
_maybe_remove(store, 'df1')
store.append('df1', df.iloc[:, :2], axes=['columns'])
store.append('df1', df.iloc[:, 2:])
tm.assert_frame_equal(store['df1'], df)
result = store.select('df1', 'columns=A')
expected = df.reindex(columns=['A'])
tm.assert_frame_equal(expected, result)
# selection on the non-indexable
result = store.select(
'df1', ('columns=A', 'index=df.index[0:4]'))
expected = df.reindex(columns=['A'], index=df.index[0:4])
tm.assert_frame_equal(expected, result)
# this isn't supported
with pytest.raises(TypeError):
store.select('df1',
'columns=A and index>df.index[4]')
def test_append_with_different_block_ordering(self):
# GH 4096; using same frames, but different block orderings
with ensure_clean_store(self.path) as store:
for i in range(10):
df = DataFrame(np.random.randn(10, 2), columns=list('AB'))
df['index'] = range(10)
df['index'] += i * 10
df['int64'] = Series([1] * len(df), dtype='int64')
df['int16'] = Series([1] * len(df), dtype='int16')
if i % 2 == 0:
del df['int64']
df['int64'] = Series([1] * len(df), dtype='int64')
if i % 3 == 0:
a = df.pop('A')
df['A'] = a
df.set_index('index', inplace=True)
store.append('df', df)
# test a different ordering but with more fields (like invalid
# combinate)
with ensure_clean_store(self.path) as store:
df = DataFrame(np.random.randn(10, 2),
columns=list('AB'), dtype='float64')
df['int64'] = Series([1] * len(df), dtype='int64')
df['int16'] = Series([1] * len(df), dtype='int16')
store.append('df', df)
# store additional fields in different blocks
df['int16_2'] = Series([1] * len(df), dtype='int16')
pytest.raises(ValueError, store.append, 'df', df)
# store multile additional fields in different blocks
df['float_3'] = Series([1.] * len(df), dtype='float64')
pytest.raises(ValueError, store.append, 'df', df)
def test_append_with_strings(self):
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
wp = tm.makePanel()
wp2 = wp.rename_axis(
{x: "%s_extra" % x for x in wp.minor_axis}, axis=2)
def check_col(key, name, size):
assert getattr(store.get_storer(key)
.table.description, name).itemsize == size
store.append('s1', wp, min_itemsize=20)
store.append('s1', wp2)
expected = concat([wp, wp2], axis=2)
expected = expected.reindex(
minor_axis=sorted(expected.minor_axis))
assert_panel_equal(store['s1'], expected)
check_col('s1', 'minor_axis', 20)
# test dict format
store.append('s2', wp, min_itemsize={'minor_axis': 20})
store.append('s2', wp2)
expected = concat([wp, wp2], axis=2)
expected = expected.reindex(
minor_axis=sorted(expected.minor_axis))
assert_panel_equal(store['s2'], expected)
check_col('s2', 'minor_axis', 20)
# apply the wrong field (similar to #1)
store.append('s3', wp, min_itemsize={'major_axis': 20})
pytest.raises(ValueError, store.append, 's3', wp2)
# test truncation of bigger strings
store.append('s4', wp)
pytest.raises(ValueError, store.append, 's4', wp2)
# avoid truncation on elements
df = DataFrame([[123, 'asdqwerty'], [345, 'dggnhebbsdfbdfb']])
store.append('df_big', df)
tm.assert_frame_equal(store.select('df_big'), df)
check_col('df_big', 'values_block_1', 15)
# appending smaller string ok
df2 = DataFrame([[124, 'asdqy'], [346, 'dggnhefbdfb']])
store.append('df_big', df2)
expected = concat([df, df2])
tm.assert_frame_equal(store.select('df_big'), expected)
check_col('df_big', 'values_block_1', 15)
# avoid truncation on elements
df = DataFrame([[123, 'asdqwerty'], [345, 'dggnhebbsdfbdfb']])
store.append('df_big2', df, min_itemsize={'values': 50})
tm.assert_frame_equal(store.select('df_big2'), df)
check_col('df_big2', 'values_block_1', 50)
# bigger string on next append
store.append('df_new', df)
df_new = DataFrame(
[[124, 'abcdefqhij'], [346, 'abcdefghijklmnopqrtsuvwxyz']])
pytest.raises(ValueError, store.append, 'df_new', df_new)
# min_itemsize on Series index (GH 11412)
df = tm.makeMixedDataFrame().set_index('C')
store.append('ss', df['B'], min_itemsize={'index': 4})
tm.assert_series_equal(store.select('ss'), df['B'])
# same as above, with data_columns=True
store.append('ss2', df['B'], data_columns=True,
min_itemsize={'index': 4})
tm.assert_series_equal(store.select('ss2'), df['B'])
# min_itemsize in index without appending (GH 10381)
store.put('ss3', df, format='table',
min_itemsize={'index': 6})
# just make sure there is a longer string:
df2 = df.copy().reset_index().assign(C='longer').set_index('C')
store.append('ss3', df2)
tm.assert_frame_equal(store.select('ss3'),
pd.concat([df, df2]))
# same as above, with a Series
store.put('ss4', df['B'], format='table',
min_itemsize={'index': 6})
store.append('ss4', df2['B'])
tm.assert_series_equal(store.select('ss4'),
pd.concat([df['B'], df2['B']]))
# with nans
_maybe_remove(store, 'df')
df = tm.makeTimeDataFrame()
df['string'] = 'foo'
df.loc[1:4, 'string'] = np.nan
df['string2'] = 'bar'
df.loc[4:8, 'string2'] = np.nan
df['string3'] = 'bah'
df.loc[1:, 'string3'] = np.nan
store.append('df', df)
result = store.select('df')
tm.assert_frame_equal(result, df)
with ensure_clean_store(self.path) as store:
def check_col(key, name, size):
assert getattr(store.get_storer(key)
.table.description, name).itemsize, size
df = DataFrame(dict(A='foo', B='bar'), index=range(10))
# a min_itemsize that creates a data_column
_maybe_remove(store, 'df')
store.append('df', df, min_itemsize={'A': 200})
check_col('df', 'A', 200)
assert store.get_storer('df').data_columns == ['A']
# a min_itemsize that creates a data_column2
_maybe_remove(store, 'df')
store.append('df', df, data_columns=['B'], min_itemsize={'A': 200})
check_col('df', 'A', 200)
assert store.get_storer('df').data_columns == ['B', 'A']
# a min_itemsize that creates a data_column2
_maybe_remove(store, 'df')
store.append('df', df, data_columns=[
'B'], min_itemsize={'values': 200})
check_col('df', 'B', 200)
check_col('df', 'values_block_0', 200)
assert store.get_storer('df').data_columns == ['B']
# infer the .typ on subsequent appends
_maybe_remove(store, 'df')
store.append('df', df[:5], min_itemsize=200)
store.append('df', df[5:], min_itemsize=200)
tm.assert_frame_equal(store['df'], df)
# invalid min_itemsize keys
df = DataFrame(['foo', 'foo', 'foo', 'barh',
'barh', 'barh'], columns=['A'])
_maybe_remove(store, 'df')
pytest.raises(ValueError, store.append, 'df',
df, min_itemsize={'foo': 20, 'foobar': 20})
def test_to_hdf_with_min_itemsize(self):
with ensure_clean_path(self.path) as path:
# min_itemsize in index with to_hdf (GH 10381)
df = tm.makeMixedDataFrame().set_index('C')
df.to_hdf(path, 'ss3', format='table', min_itemsize={'index': 6})
# just make sure there is a longer string:
df2 = df.copy().reset_index().assign(C='longer').set_index('C')
df2.to_hdf(path, 'ss3', append=True, format='table')
tm.assert_frame_equal(pd.read_hdf(path, 'ss3'),
pd.concat([df, df2]))
# same as above, with a Series
df['B'].to_hdf(path, 'ss4', format='table',
min_itemsize={'index': 6})
df2['B'].to_hdf(path, 'ss4', append=True, format='table')
tm.assert_series_equal(pd.read_hdf(path, 'ss4'),
pd.concat([df['B'], df2['B']]))
@pytest.mark.parametrize("format", ['fixed', 'table'])
def test_to_hdf_errors(self, format):
data = ['\ud800foo']
ser = pd.Series(data, index=pd.Index(data))
with ensure_clean_path(self.path) as path:
# GH 20835
ser.to_hdf(path, 'table', format=format, errors='surrogatepass')
result = pd.read_hdf(path, 'table', errors='surrogatepass')
tm.assert_series_equal(result, ser)
def test_append_with_data_columns(self):
with ensure_clean_store(self.path) as store:
df = tm.makeTimeDataFrame()
df.iloc[0, df.columns.get_loc('B')] = 1.
_maybe_remove(store, 'df')
store.append('df', df[:2], data_columns=['B'])
store.append('df', df[2:])
tm.assert_frame_equal(store['df'], df)
# check that we have indicies created
assert(store._handle.root.df.table.cols.index.is_indexed is True)
assert(store._handle.root.df.table.cols.B.is_indexed is True)
# data column searching
result = store.select('df', 'B>0')
expected = df[df.B > 0]
tm.assert_frame_equal(result, expected)
# data column searching (with an indexable and a data_columns)
result = store.select(
'df', 'B>0 and index>df.index[3]')
df_new = df.reindex(index=df.index[4:])
expected = df_new[df_new.B > 0]
tm.assert_frame_equal(result, expected)
# data column selection with a string data_column
df_new = df.copy()
df_new['string'] = 'foo'
df_new.loc[1:4, 'string'] = np.nan
df_new.loc[5:6, 'string'] = 'bar'
_maybe_remove(store, 'df')
store.append('df', df_new, data_columns=['string'])
result = store.select('df', "string='foo'")
expected = df_new[df_new.string == 'foo']
tm.assert_frame_equal(result, expected)
# using min_itemsize and a data column
def check_col(key, name, size):
assert getattr(store.get_storer(key)
.table.description, name).itemsize == size
with ensure_clean_store(self.path) as store:
_maybe_remove(store, 'df')
store.append('df', df_new, data_columns=['string'],
min_itemsize={'string': 30})
check_col('df', 'string', 30)
_maybe_remove(store, 'df')
store.append(
'df', df_new, data_columns=['string'], min_itemsize=30)
check_col('df', 'string', 30)
_maybe_remove(store, 'df')
store.append('df', df_new, data_columns=['string'],
min_itemsize={'values': 30})
check_col('df', 'string', 30)
with ensure_clean_store(self.path) as store:
df_new['string2'] = 'foobarbah'
df_new['string_block1'] = 'foobarbah1'
df_new['string_block2'] = 'foobarbah2'
_maybe_remove(store, 'df')
store.append('df', df_new, data_columns=['string', 'string2'],
min_itemsize={'string': 30, 'string2': 40,
'values': 50})
check_col('df', 'string', 30)
check_col('df', 'string2', 40)
check_col('df', 'values_block_1', 50)
with ensure_clean_store(self.path) as store:
# multiple data columns
df_new = df.copy()
df_new.iloc[0, df_new.columns.get_loc('A')] = 1.
df_new.iloc[0, df_new.columns.get_loc('B')] = -1.
df_new['string'] = 'foo'
sl = df_new.columns.get_loc('string')
df_new.iloc[1:4, sl] = np.nan
df_new.iloc[5:6, sl] = 'bar'
df_new['string2'] = 'foo'
sl = df_new.columns.get_loc('string2')
df_new.iloc[2:5, sl] = np.nan
df_new.iloc[7:8, sl] = 'bar'
_maybe_remove(store, 'df')
store.append(
'df', df_new, data_columns=['A', 'B', 'string', 'string2'])
result = store.select('df',
"string='foo' and string2='foo'"
" and A>0 and B<0")
expected = df_new[(df_new.string == 'foo') & (
df_new.string2 == 'foo') & (df_new.A > 0) & (df_new.B < 0)]
tm.assert_frame_equal(result, expected, check_index_type=False)
# yield an empty frame
result = store.select('df', "string='foo' and string2='cool'")
expected = df_new[(df_new.string == 'foo') & (
df_new.string2 == 'cool')]
tm.assert_frame_equal(result, expected, check_index_type=False)
with ensure_clean_store(self.path) as store:
# doc example
df_dc = df.copy()
df_dc['string'] = 'foo'
df_dc.loc[4:6, 'string'] = np.nan
df_dc.loc[7:9, 'string'] = 'bar'
df_dc['string2'] = 'cool'
df_dc['datetime'] = Timestamp('20010102')
df_dc = df_dc._convert(datetime=True)
df_dc.loc[3:5, ['A', 'B', 'datetime']] = np.nan
_maybe_remove(store, 'df_dc')
store.append('df_dc', df_dc,
data_columns=['B', 'C', 'string',
'string2', 'datetime'])
result = store.select('df_dc', 'B>0')
expected = df_dc[df_dc.B > 0]
tm.assert_frame_equal(result, expected, check_index_type=False)
result = store.select(
'df_dc', ['B > 0', 'C > 0', 'string == foo'])
expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (
df_dc.string == 'foo')]
tm.assert_frame_equal(result, expected, check_index_type=False)
with ensure_clean_store(self.path) as store:
# doc example part 2
np.random.seed(1234)
index = date_range('1/1/2000', periods=8)
df_dc = DataFrame(np.random.randn(8, 3), index=index,
columns=['A', 'B', 'C'])
df_dc['string'] = 'foo'
df_dc.loc[4:6, 'string'] = np.nan
df_dc.loc[7:9, 'string'] = 'bar'
df_dc.loc[:, ['B', 'C']] = df_dc.loc[:, ['B', 'C']].abs()
df_dc['string2'] = 'cool'
# on-disk operations
store.append('df_dc', df_dc, data_columns=[
'B', 'C', 'string', 'string2'])
result = store.select('df_dc', 'B>0')
expected = df_dc[df_dc.B > 0]
tm.assert_frame_equal(result, expected)
result = store.select(
'df_dc', ['B > 0', 'C > 0', 'string == "foo"'])
expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) &
(df_dc.string == 'foo')]
tm.assert_frame_equal(result, expected)
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
# panel
# GH5717 not handling data_columns
np.random.seed(1234)
p = tm.makePanel()
store.append('p1', p)
tm.assert_panel_equal(store.select('p1'), p)
store.append('p2', p, data_columns=True)
tm.assert_panel_equal(store.select('p2'), p)
result = store.select('p2', where='ItemA>0')
expected = p.to_frame()
expected = expected[expected['ItemA'] > 0]
tm.assert_frame_equal(result.to_frame(), expected)
result = store.select(
'p2', where='ItemA>0 & minor_axis=["A","B"]')
expected = p.to_frame()
expected = expected[expected['ItemA'] > 0]
expected = expected[expected.reset_index(
level=['major']).index.isin(['A', 'B'])]
tm.assert_frame_equal(result.to_frame(), expected)
def test_create_table_index(self):
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
def col(t, column):
return getattr(store.get_storer(t).table.cols, column)
# index=False
wp = tm.makePanel()
store.append('p5', wp, index=False)
store.create_table_index('p5', columns=['major_axis'])
assert(col('p5', 'major_axis').is_indexed is True)
assert(col('p5', 'minor_axis').is_indexed is False)
# index=True
store.append('p5i', wp, index=True)
assert(col('p5i', 'major_axis').is_indexed is True)
assert(col('p5i', 'minor_axis').is_indexed is True)
# default optlevels
store.get_storer('p5').create_index()
assert(col('p5', 'major_axis').index.optlevel == 6)
assert(col('p5', 'minor_axis').index.kind == 'medium')
# let's change the indexing scheme
store.create_table_index('p5')
assert(col('p5', 'major_axis').index.optlevel == 6)
assert(col('p5', 'minor_axis').index.kind == 'medium')
store.create_table_index('p5', optlevel=9)
assert(col('p5', 'major_axis').index.optlevel == 9)
assert(col('p5', 'minor_axis').index.kind == 'medium')
store.create_table_index('p5', kind='full')
assert(col('p5', 'major_axis').index.optlevel == 9)
assert(col('p5', 'minor_axis').index.kind == 'full')
store.create_table_index('p5', optlevel=1, kind='light')
assert(col('p5', 'major_axis').index.optlevel == 1)
assert(col('p5', 'minor_axis').index.kind == 'light')
# data columns
df = tm.makeTimeDataFrame()
df['string'] = 'foo'
df['string2'] = 'bar'
store.append('f', df, data_columns=['string', 'string2'])
assert(col('f', 'index').is_indexed is True)
assert(col('f', 'string').is_indexed is True)
assert(col('f', 'string2').is_indexed is True)
# specify index=columns
store.append(
'f2', df, index=['string'],
data_columns=['string', 'string2'])
assert(col('f2', 'index').is_indexed is False)
assert(col('f2', 'string').is_indexed is True)
assert(col('f2', 'string2').is_indexed is False)
# try to index a non-table
_maybe_remove(store, 'f2')
store.put('f2', df)
pytest.raises(TypeError, store.create_table_index, 'f2')
def test_append_diff_item_order(self):
with catch_warnings(record=True):
wp = tm.makePanel()
wp1 = wp.iloc[:, :10, :]
wp2 = wp.iloc[wp.items.get_indexer(['ItemC', 'ItemB', 'ItemA']),
10:, :]
with ensure_clean_store(self.path) as store:
store.put('panel', wp1, format='table')
pytest.raises(ValueError, store.put, 'panel', wp2,
append=True)
def test_append_hierarchical(self):
index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
['one', 'two', 'three']],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['foo', 'bar'])
df = DataFrame(np.random.randn(10, 3), index=index,
columns=['A', 'B', 'C'])
with ensure_clean_store(self.path) as store:
store.append('mi', df)
result = store.select('mi')
tm.assert_frame_equal(result, df)
# GH 3748
result = store.select('mi', columns=['A', 'B'])
expected = df.reindex(columns=['A', 'B'])
tm.assert_frame_equal(result, expected)
with ensure_clean_path('test.hdf') as path:
df.to_hdf(path, 'df', format='table')
result = read_hdf(path, 'df', columns=['A', 'B'])
expected = df.reindex(columns=['A', 'B'])
tm.assert_frame_equal(result, expected)
def test_column_multiindex(self):
# GH 4710
# recreate multi-indexes properly
index = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'),
('B', 'a'), ('B', 'b')],
names=['first', 'second'])
df = DataFrame(np.arange(12).reshape(3, 4), columns=index)
expected = df.copy()
if isinstance(expected.index, RangeIndex):
expected.index = Int64Index(expected.index)
with ensure_clean_store(self.path) as store:
store.put('df', df)
tm.assert_frame_equal(store['df'], expected,
check_index_type=True,
check_column_type=True)
store.put('df1', df, format='table')
tm.assert_frame_equal(store['df1'], expected,
check_index_type=True,
check_column_type=True)
pytest.raises(ValueError, store.put, 'df2', df,
format='table', data_columns=['A'])
pytest.raises(ValueError, store.put, 'df3', df,
format='table', data_columns=True)
# appending multi-column on existing table (see GH 6167)
with ensure_clean_store(self.path) as store:
store.append('df2', df)
store.append('df2', df)
tm.assert_frame_equal(store['df2'], concat((df, df)))
# non_index_axes name
df = DataFrame(np.arange(12).reshape(3, 4),
columns=Index(list('ABCD'), name='foo'))
expected = df.copy()
if isinstance(expected.index, RangeIndex):
expected.index = Int64Index(expected.index)
with ensure_clean_store(self.path) as store:
store.put('df1', df, format='table')
tm.assert_frame_equal(store['df1'], expected,
check_index_type=True,
check_column_type=True)
def test_store_multiindex(self):
# validate multi-index names
# GH 5527
with ensure_clean_store(self.path) as store:
def make_index(names=None):
return MultiIndex.from_tuples([(datetime.datetime(2013, 12, d),
s, t)
for d in range(1, 3)
for s in range(2)
for t in range(3)],
names=names)
# no names
_maybe_remove(store, 'df')
df = DataFrame(np.zeros((12, 2)), columns=[
'a', 'b'], index=make_index())
store.append('df', df)
tm.assert_frame_equal(store.select('df'), df)
# partial names
_maybe_remove(store, 'df')
df = DataFrame(np.zeros((12, 2)), columns=[
'a', 'b'], index=make_index(['date', None, None]))
store.append('df', df)
tm.assert_frame_equal(store.select('df'), df)
# series
_maybe_remove(store, 's')
s = Series(np.zeros(12), index=make_index(['date', None, None]))
store.append('s', s)
xp = Series(np.zeros(12), index=make_index(
['date', 'level_1', 'level_2']))
tm.assert_series_equal(store.select('s'), xp)
# dup with column
_maybe_remove(store, 'df')
df = DataFrame(np.zeros((12, 2)), columns=[
'a', 'b'], index=make_index(['date', 'a', 't']))
pytest.raises(ValueError, store.append, 'df', df)
# dup within level
_maybe_remove(store, 'df')
df = DataFrame(np.zeros((12, 2)), columns=['a', 'b'],
index=make_index(['date', 'date', 'date']))
pytest.raises(ValueError, store.append, 'df', df)
# fully names
_maybe_remove(store, 'df')
df = DataFrame(np.zeros((12, 2)), columns=[
'a', 'b'], index=make_index(['date', 's', 't']))
store.append('df', df)
tm.assert_frame_equal(store.select('df'), df)
def test_select_columns_in_where(self):
# GH 6169
# recreate multi-indexes when columns is passed
# in the `where` argument
index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
['one', 'two', 'three']],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['foo_name', 'bar_name'])
# With a DataFrame
df = DataFrame(np.random.randn(10, 3), index=index,
columns=['A', 'B', 'C'])
with ensure_clean_store(self.path) as store:
store.put('df', df, format='table')
expected = df[['A']]
tm.assert_frame_equal(store.select('df', columns=['A']), expected)
tm.assert_frame_equal(store.select(
'df', where="columns=['A']"), expected)
# With a Series
s = Series(np.random.randn(10), index=index,
name='A')
with ensure_clean_store(self.path) as store:
store.put('s', s, format='table')
tm.assert_series_equal(store.select('s', where="columns=['A']"), s)
def test_mi_data_columns(self):
# GH 14435
idx = pd.MultiIndex.from_arrays([date_range('2000-01-01', periods=5),
range(5)], names=['date', 'id'])
df = pd.DataFrame({'a': [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx)
with ensure_clean_store(self.path) as store:
store.append('df', df, data_columns=True)
actual = store.select('df', where='id == 1')
expected = df.iloc[[1], :]
tm.assert_frame_equal(actual, expected)
def test_pass_spec_to_storer(self):
df = tm.makeDataFrame()
with ensure_clean_store(self.path) as store:
store.put('df', df)
pytest.raises(TypeError, store.select, 'df', columns=['A'])
pytest.raises(TypeError, store.select,
'df', where=[('columns=A')])
def test_append_misc(self):
with ensure_clean_store(self.path) as store:
df = tm.makeDataFrame()
store.append('df', df, chunksize=1)
result = store.select('df')
tm.assert_frame_equal(result, df)
store.append('df1', df, expectedrows=10)
result = store.select('df1')
tm.assert_frame_equal(result, df)
# more chunksize in append tests
def check(obj, comparator):
for c in [10, 200, 1000]:
with ensure_clean_store(self.path, mode='w') as store:
store.append('obj', obj, chunksize=c)
result = store.select('obj')
comparator(result, obj)
df = tm.makeDataFrame()
df['string'] = 'foo'
df['float322'] = 1.
df['float322'] = df['float322'].astype('float32')
df['bool'] = df['float322'] > 0
df['time1'] = Timestamp('20130101')
df['time2'] = Timestamp('20130102')
check(df, tm.assert_frame_equal)
with catch_warnings(record=True):
p = tm.makePanel()
check(p, assert_panel_equal)
# empty frame, GH4273
with ensure_clean_store(self.path) as store:
# 0 len
df_empty = DataFrame(columns=list('ABC'))
store.append('df', df_empty)
pytest.raises(KeyError, store.select, 'df')
# repeated append of 0/non-zero frames
df = DataFrame(np.random.rand(10, 3), columns=list('ABC'))
store.append('df', df)
assert_frame_equal(store.select('df'), df)
store.append('df', df_empty)
assert_frame_equal(store.select('df'), df)
# store
df = DataFrame(columns=list('ABC'))
store.put('df2', df)
assert_frame_equal(store.select('df2'), df)
with catch_warnings(record=True):
# 0 len
p_empty = Panel(items=list('ABC'))
store.append('p', p_empty)
pytest.raises(KeyError, store.select, 'p')
# repeated append of 0/non-zero frames
p = Panel(np.random.randn(3, 4, 5), items=list('ABC'))
store.append('p', p)
assert_panel_equal(store.select('p'), p)
store.append('p', p_empty)
assert_panel_equal(store.select('p'), p)
# store
store.put('p2', p_empty)
assert_panel_equal(store.select('p2'), p_empty)
def test_append_raise(self):
with ensure_clean_store(self.path) as store:
# test append with invalid input to get good error messages
# list in column
df = tm.makeDataFrame()
df['invalid'] = [['a']] * len(df)
assert df.dtypes['invalid'] == np.object_
pytest.raises(TypeError, store.append, 'df', df)
# multiple invalid columns
df['invalid2'] = [['a']] * len(df)
df['invalid3'] = [['a']] * len(df)
pytest.raises(TypeError, store.append, 'df', df)
# datetime with embedded nans as object
df = tm.makeDataFrame()
s = Series(datetime.datetime(2001, 1, 2), index=df.index)
s = s.astype(object)
s[0:5] = np.nan
df['invalid'] = s
assert df.dtypes['invalid'] == np.object_
pytest.raises(TypeError, store.append, 'df', df)
# directly ndarray
pytest.raises(TypeError, store.append, 'df', np.arange(10))
# series directly
pytest.raises(TypeError, store.append,
'df', Series(np.arange(10)))
# appending an incompatible table
df = tm.makeDataFrame()
store.append('df', df)
df['foo'] = 'foo'
pytest.raises(ValueError, store.append, 'df', df)
def test_table_index_incompatible_dtypes(self):
df1 = DataFrame({'a': [1, 2, 3]})
df2 = DataFrame({'a': [4, 5, 6]},
index=date_range('1/1/2000', periods=3))
with ensure_clean_store(self.path) as store:
store.put('frame', df1, format='table')
pytest.raises(TypeError, store.put, 'frame', df2,
format='table', append=True)
def test_table_values_dtypes_roundtrip(self):
with ensure_clean_store(self.path) as store:
df1 = DataFrame({'a': [1, 2, 3]}, dtype='f8')
store.append('df_f8', df1)
assert_series_equal(df1.dtypes, store['df_f8'].dtypes)
df2 = DataFrame({'a': [1, 2, 3]}, dtype='i8')
store.append('df_i8', df2)
assert_series_equal(df2.dtypes, store['df_i8'].dtypes)
# incompatible dtype
pytest.raises(ValueError, store.append, 'df_i8', df1)
# check creation/storage/retrieval of float32 (a bit hacky to
# actually create them thought)
df1 = DataFrame(
np.array([[1], [2], [3]], dtype='f4'), columns=['A'])
store.append('df_f4', df1)
assert_series_equal(df1.dtypes, store['df_f4'].dtypes)
assert df1.dtypes[0] == 'float32'
# check with mixed dtypes
df1 = DataFrame(dict((c, Series(np.random.randn(5), dtype=c))
for c in ['float32', 'float64', 'int32',
'int64', 'int16', 'int8']))
df1['string'] = 'foo'
df1['float322'] = 1.
df1['float322'] = df1['float322'].astype('float32')
df1['bool'] = df1['float32'] > 0
df1['time1'] = Timestamp('20130101')
df1['time2'] = Timestamp('20130102')
store.append('df_mixed_dtypes1', df1)
result = store.select('df_mixed_dtypes1').get_dtype_counts()
expected = Series({'float32': 2, 'float64': 1, 'int32': 1,
'bool': 1, 'int16': 1, 'int8': 1,
'int64': 1, 'object': 1, 'datetime64[ns]': 2})
result = result.sort_index()
expected = expected.sort_index()
tm.assert_series_equal(result, expected)
def test_table_mixed_dtypes(self):
# frame
df = tm.makeDataFrame()
df['obj1'] = 'foo'
df['obj2'] = 'bar'
df['bool1'] = df['A'] > 0
df['bool2'] = df['B'] > 0
df['bool3'] = True
df['int1'] = 1
df['int2'] = 2
df['timestamp1'] = Timestamp('20010102')
df['timestamp2'] = Timestamp('20010103')
df['datetime1'] = datetime.datetime(2001, 1, 2, 0, 0)
df['datetime2'] = datetime.datetime(2001, 1, 3, 0, 0)
df.loc[3:6, ['obj1']] = np.nan
df = df._consolidate()._convert(datetime=True)
with ensure_clean_store(self.path) as store:
store.append('df1_mixed', df)
tm.assert_frame_equal(store.select('df1_mixed'), df)
with catch_warnings(record=True):
# panel
wp = tm.makePanel()
wp['obj1'] = 'foo'
wp['obj2'] = 'bar'
wp['bool1'] = wp['ItemA'] > 0
wp['bool2'] = wp['ItemB'] > 0
wp['int1'] = 1
wp['int2'] = 2
wp = wp._consolidate()
with catch_warnings(record=True):
with ensure_clean_store(self.path) as store:
store.append('p1_mixed', wp)
assert_panel_equal(store.select('p1_mixed'), wp)
def test_unimplemented_dtypes_table_columns(self):
with ensure_clean_store(self.path) as store:
l = [('date', datetime.date(2001, 1, 2))]
# py3 ok for unicode
if not compat.PY3:
l.append(('unicode', u('\\u03c3')))
# currently not supported dtypes ####
for n, f in l:
df = tm.makeDataFrame()
df[n] = f
pytest.raises(
TypeError, store.append, 'df1_%s' % n, df)
# frame
df = tm.makeDataFrame()
df['obj1'] = 'foo'
df['obj2'] = 'bar'
df['datetime1'] = datetime.date(2001, 1, 2)
df = df._consolidate()._convert(datetime=True)
with ensure_clean_store(self.path) as store:
# this fails because we have a date in the object block......
pytest.raises(TypeError, store.append, 'df_unimplemented', df)
@pytest.mark.skipif(
not _np_version_under1p15,
reason=("pytables conda build package needs build "
"with numpy 1.15: gh-22098"))
def test_calendar_roundtrip_issue(self):
# 8591
# doc example from tseries holiday section
weekmask_egypt = 'Sun Mon Tue Wed Thu'
holidays = ['2012-05-01',
datetime.datetime(2013, 5, 1), np.datetime64('2014-05-01')]
bday_egypt = pd.offsets.CustomBusinessDay(
holidays=holidays, weekmask=weekmask_egypt)
dt = datetime.datetime(2013, 4, 30)
dts = date_range(dt, periods=5, freq=bday_egypt)
s = (Series(dts.weekday, dts).map(
Series('Mon Tue Wed Thu Fri Sat Sun'.split())))
with ensure_clean_store(self.path) as store:
store.put('fixed', s)
result = store.select('fixed')
assert_series_equal(result, s)
store.append('table', s)
result = store.select('table')
assert_series_equal(result, s)
def test_roundtrip_tz_aware_index(self):
# GH 17618
time = pd.Timestamp('2000-01-01 01:00:00', tz='US/Eastern')
df = pd.DataFrame(data=[0], index=[time])
with ensure_clean_store(self.path) as store:
store.put('frame', df, format='fixed')
recons = store['frame']
tm.assert_frame_equal(recons, df)
assert recons.index[0].value == 946706400000000000
def test_append_with_timedelta(self):
# GH 3577
# append timedelta
df = DataFrame(dict(A=Timestamp('20130101'), B=[Timestamp(
'20130101') + timedelta(days=i, seconds=10) for i in range(10)]))
df['C'] = df['A'] - df['B']
df.loc[3:5, 'C'] = np.nan
with ensure_clean_store(self.path) as store:
# table
_maybe_remove(store, 'df')
store.append('df', df, data_columns=True)
result = store.select('df')
assert_frame_equal(result, df)
result = store.select('df', where="C<100000")
assert_frame_equal(result, df)
result = store.select('df', where="C<pd.Timedelta('-3D')")
assert_frame_equal(result, df.iloc[3:])
result = store.select('df', "C<'-3D'")
assert_frame_equal(result, df.iloc[3:])
# a bit hacky here as we don't really deal with the NaT properly
result = store.select('df', "C<'-500000s'")
result = result.dropna(subset=['C'])
assert_frame_equal(result, df.iloc[6:])
result = store.select('df', "C<'-3.5D'")
result = result.iloc[1:]
assert_frame_equal(result, df.iloc[4:])
# fixed
_maybe_remove(store, 'df2')
store.put('df2', df)
result = store.select('df2')
assert_frame_equal(result, df)
def test_remove(self):
with ensure_clean_store(self.path) as store:
ts = tm.makeTimeSeries()
df = tm.makeDataFrame()
store['a'] = ts
store['b'] = df
_maybe_remove(store, 'a')
assert len(store) == 1
tm.assert_frame_equal(df, store['b'])
_maybe_remove(store, 'b')
assert len(store) == 0
# nonexistence
pytest.raises(KeyError, store.remove, 'a_nonexistent_store')
# pathing
store['a'] = ts
store['b/foo'] = df
_maybe_remove(store, 'foo')
_maybe_remove(store, 'b/foo')
assert len(store) == 1
store['a'] = ts
store['b/foo'] = df
_maybe_remove(store, 'b')
assert len(store) == 1
# __delitem__
store['a'] = ts
store['b'] = df
del store['a']
del store['b']
assert len(store) == 0
def test_remove_where(self):
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
# non-existance
crit1 = 'index>foo'
pytest.raises(KeyError, store.remove, 'a', [crit1])
# try to remove non-table (with crit)
# non-table ok (where = None)
wp = tm.makePanel(30)
store.put('wp', wp, format='table')
store.remove('wp', ["minor_axis=['A', 'D']"])
rs = store.select('wp')
expected = wp.reindex(minor_axis=['B', 'C'])
assert_panel_equal(rs, expected)
# empty where
_maybe_remove(store, 'wp')
store.put('wp', wp, format='table')
# deleted number (entire table)
n = store.remove('wp', [])
assert n == 120
# non - empty where
_maybe_remove(store, 'wp')
store.put('wp', wp, format='table')
pytest.raises(ValueError, store.remove,
'wp', ['foo'])
def test_remove_startstop(self):
# GH #4835 and #6177
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
wp = tm.makePanel(30)
# start
_maybe_remove(store, 'wp1')
store.put('wp1', wp, format='t')
n = store.remove('wp1', start=32)
assert n == 120 - 32
result = store.select('wp1')
expected = wp.reindex(major_axis=wp.major_axis[:32 // 4])
assert_panel_equal(result, expected)
_maybe_remove(store, 'wp2')
store.put('wp2', wp, format='t')
n = store.remove('wp2', start=-32)
assert n == 32
result = store.select('wp2')
expected = wp.reindex(major_axis=wp.major_axis[:-32 // 4])
assert_panel_equal(result, expected)
# stop
_maybe_remove(store, 'wp3')
store.put('wp3', wp, format='t')
n = store.remove('wp3', stop=32)
assert n == 32
result = store.select('wp3')
expected = wp.reindex(major_axis=wp.major_axis[32 // 4:])
assert_panel_equal(result, expected)
_maybe_remove(store, 'wp4')
store.put('wp4', wp, format='t')
n = store.remove('wp4', stop=-32)
assert n == 120 - 32
result = store.select('wp4')
expected = wp.reindex(major_axis=wp.major_axis[-32 // 4:])
assert_panel_equal(result, expected)
# start n stop
_maybe_remove(store, 'wp5')
store.put('wp5', wp, format='t')
n = store.remove('wp5', start=16, stop=-16)
assert n == 120 - 32
result = store.select('wp5')
expected = wp.reindex(
major_axis=(wp.major_axis[:16 // 4]
.union(wp.major_axis[-16 // 4:])))
assert_panel_equal(result, expected)
_maybe_remove(store, 'wp6')
store.put('wp6', wp, format='t')
n = store.remove('wp6', start=16, stop=16)
assert n == 0
result = store.select('wp6')
expected = wp.reindex(major_axis=wp.major_axis)
assert_panel_equal(result, expected)
# with where
_maybe_remove(store, 'wp7')
# TODO: unused?
date = wp.major_axis.take(np.arange(0, 30, 3)) # noqa
crit = 'major_axis=date'
store.put('wp7', wp, format='t')
n = store.remove('wp7', where=[crit], stop=80)
assert n == 28
result = store.select('wp7')
expected = wp.reindex(major_axis=wp.major_axis.difference(
wp.major_axis[np.arange(0, 20, 3)]))
assert_panel_equal(result, expected)
def test_remove_crit(self):
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
wp = tm.makePanel(30)
# group row removal
_maybe_remove(store, 'wp3')
date4 = wp.major_axis.take([0, 1, 2, 4, 5, 6, 8, 9, 10])
crit4 = 'major_axis=date4'
store.put('wp3', wp, format='t')
n = store.remove('wp3', where=[crit4])
assert n == 36
result = store.select('wp3')
expected = wp.reindex(
major_axis=wp.major_axis.difference(date4))
assert_panel_equal(result, expected)
# upper half
_maybe_remove(store, 'wp')
store.put('wp', wp, format='table')
date = wp.major_axis[len(wp.major_axis) // 2]
crit1 = 'major_axis>date'
crit2 = "minor_axis=['A', 'D']"
n = store.remove('wp', where=[crit1])
assert n == 56
n = store.remove('wp', where=[crit2])
assert n == 32
result = store['wp']
expected = wp.truncate(after=date).reindex(minor=['B', 'C'])
assert_panel_equal(result, expected)
# individual row elements
_maybe_remove(store, 'wp2')
store.put('wp2', wp, format='table')
date1 = wp.major_axis[1:3]
crit1 = 'major_axis=date1'
store.remove('wp2', where=[crit1])
result = store.select('wp2')
expected = wp.reindex(
major_axis=wp.major_axis.difference(date1))
assert_panel_equal(result, expected)
date2 = wp.major_axis[5]
crit2 = 'major_axis=date2'
store.remove('wp2', where=[crit2])
result = store['wp2']
expected = wp.reindex(
major_axis=(wp.major_axis
.difference(date1)
.difference(Index([date2]))
))
assert_panel_equal(result, expected)
date3 = [wp.major_axis[7], wp.major_axis[9]]
crit3 = 'major_axis=date3'
store.remove('wp2', where=[crit3])
result = store['wp2']
expected = wp.reindex(major_axis=wp.major_axis
.difference(date1)
.difference(Index([date2]))
.difference(Index(date3)))
assert_panel_equal(result, expected)
# corners
_maybe_remove(store, 'wp4')
store.put('wp4', wp, format='table')
n = store.remove(
'wp4', where="major_axis>wp.major_axis[-1]")
result = store.select('wp4')
assert_panel_equal(result, wp)
def test_invalid_terms(self):
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
df = tm.makeTimeDataFrame()
df['string'] = 'foo'
df.loc[0:4, 'string'] = 'bar'
wp = tm.makePanel()
store.put('df', df, format='table')
store.put('wp', wp, format='table')
# some invalid terms
pytest.raises(ValueError, store.select,
'wp', "minor=['A', 'B']")
pytest.raises(ValueError, store.select,
'wp', ["index=['20121114']"])
pytest.raises(ValueError, store.select, 'wp', [
"index=['20121114', '20121114']"])
pytest.raises(TypeError, Term)
# more invalid
pytest.raises(
ValueError, store.select, 'df', 'df.index[3]')
pytest.raises(SyntaxError, store.select, 'df', 'index>')
pytest.raises(
ValueError, store.select, 'wp',
"major_axis<'20000108' & minor_axis['A', 'B']")
# from the docs
with ensure_clean_path(self.path) as path:
dfq = DataFrame(np.random.randn(10, 4), columns=list(
'ABCD'), index=date_range('20130101', periods=10))
dfq.to_hdf(path, 'dfq', format='table', data_columns=True)
# check ok
read_hdf(path, 'dfq',
where="index>Timestamp('20130104') & columns=['A', 'B']")
read_hdf(path, 'dfq', where="A>0 or C>0")
# catch the invalid reference
with ensure_clean_path(self.path) as path:
dfq = DataFrame(np.random.randn(10, 4), columns=list(
'ABCD'), index=date_range('20130101', periods=10))
dfq.to_hdf(path, 'dfq', format='table')
pytest.raises(ValueError, read_hdf, path,
'dfq', where="A>0 or C>0")
def test_terms(self):
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
wp = tm.makePanel()
wpneg = Panel.fromDict({-1: tm.makeDataFrame(),
0: tm.makeDataFrame(),
1: tm.makeDataFrame()})
store.put('wp', wp, format='table')
store.put('wpneg', wpneg, format='table')
# panel
result = store.select(
'wp',
"major_axis<'20000108' and minor_axis=['A', 'B']")
expected = wp.truncate(
after='20000108').reindex(minor=['A', 'B'])
assert_panel_equal(result, expected)
# with deprecation
result = store.select(
'wp', where=("major_axis<'20000108' "
"and minor_axis=['A', 'B']"))
expected = wp.truncate(
after='20000108').reindex(minor=['A', 'B'])
tm.assert_panel_equal(result, expected)
with catch_warnings(record=True):
# valid terms
terms = [('major_axis=20121114'),
('major_axis>20121114'),
(("major_axis=['20121114', '20121114']"),),
('major_axis=datetime.datetime(2012, 11, 14)'),
'major_axis> 20121114',
'major_axis >20121114',
'major_axis > 20121114',
(("minor_axis=['A', 'B']"),),
(("minor_axis=['A', 'B']"),),
((("minor_axis==['A', 'B']"),),),
(("items=['ItemA', 'ItemB']"),),
('items=ItemA'),
]
for t in terms:
store.select('wp', t)
with tm.assert_raises_regex(
TypeError, 'Only named functions are supported'):
store.select(
'wp',
'major_axis == (lambda x: x)("20130101")')
with catch_warnings(record=True):
# check USub node parsing
res = store.select('wpneg', 'items == -1')
expected = Panel({-1: wpneg[-1]})
tm.assert_panel_equal(res, expected)
with tm.assert_raises_regex(NotImplementedError,
'Unary addition '
'not supported'):
store.select('wpneg', 'items == +1')
def test_term_compat(self):
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
wp = Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'],
major_axis=date_range('1/1/2000', periods=5),
minor_axis=['A', 'B', 'C', 'D'])
store.append('wp', wp)
result = store.select(
'wp', where=("major_axis>20000102 "
"and minor_axis=['A', 'B']"))
expected = wp.loc[:, wp.major_axis >
Timestamp('20000102'), ['A', 'B']]
assert_panel_equal(result, expected)
store.remove('wp', 'major_axis>20000103')
result = store.select('wp')
expected = wp.loc[:, wp.major_axis <= Timestamp('20000103'), :]
assert_panel_equal(result, expected)
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
wp = Panel(np.random.randn(2, 5, 4),
items=['Item1', 'Item2'],
major_axis=date_range('1/1/2000', periods=5),
minor_axis=['A', 'B', 'C', 'D'])
store.append('wp', wp)
# stringified datetimes
result = store.select(
'wp', 'major_axis>datetime.datetime(2000, 1, 2)')
expected = wp.loc[:, wp.major_axis > Timestamp('20000102')]
assert_panel_equal(result, expected)
result = store.select(
'wp', 'major_axis>datetime.datetime(2000, 1, 2)')
expected = wp.loc[:, wp.major_axis > Timestamp('20000102')]
assert_panel_equal(result, expected)
result = store.select(
'wp',
"major_axis=[datetime.datetime(2000, 1, 2, 0, 0), "
"datetime.datetime(2000, 1, 3, 0, 0)]")
expected = wp.loc[:, [Timestamp('20000102'),
Timestamp('20000103')]]
assert_panel_equal(result, expected)
result = store.select(
'wp', "minor_axis=['A', 'B']")
expected = wp.loc[:, :, ['A', 'B']]
assert_panel_equal(result, expected)
def test_same_name_scoping(self):
with ensure_clean_store(self.path) as store:
import pandas as pd
df = DataFrame(np.random.randn(20, 2),
index=pd.date_range('20130101', periods=20))
store.put('df', df, format='table')
expected = df[df.index > pd.Timestamp('20130105')]
import datetime # noqa
result = store.select('df', 'index>datetime.datetime(2013,1,5)')
assert_frame_equal(result, expected)
from datetime import datetime # noqa
# technically an error, but allow it
result = store.select('df', 'index>datetime.datetime(2013,1,5)')
assert_frame_equal(result, expected)
result = store.select('df', 'index>datetime(2013,1,5)')
assert_frame_equal(result, expected)
def test_series(self):
s = tm.makeStringSeries()
self._check_roundtrip(s, tm.assert_series_equal)
ts = tm.makeTimeSeries()
self._check_roundtrip(ts, tm.assert_series_equal)
ts2 = Series(ts.index, Index(ts.index, dtype=object))
self._check_roundtrip(ts2, tm.assert_series_equal)
ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object),
dtype=object))
self._check_roundtrip(ts3, tm.assert_series_equal,
check_index_type=False)
def test_sparse_series(self):
s = tm.makeStringSeries()
s.iloc[3:5] = np.nan
ss = s.to_sparse()
self._check_roundtrip(ss, tm.assert_series_equal,
check_series_type=True)
ss2 = s.to_sparse(kind='integer')
self._check_roundtrip(ss2, tm.assert_series_equal,
check_series_type=True)
ss3 = s.to_sparse(fill_value=0)
self._check_roundtrip(ss3, tm.assert_series_equal,
check_series_type=True)
def test_sparse_frame(self):
s = tm.makeDataFrame()
s.iloc[3:5, 1:3] = np.nan
s.iloc[8:10, -2] = np.nan
ss = s.to_sparse()
self._check_double_roundtrip(ss, tm.assert_frame_equal,
check_frame_type=True)
ss2 = s.to_sparse(kind='integer')
self._check_double_roundtrip(ss2, tm.assert_frame_equal,
check_frame_type=True)
ss3 = s.to_sparse(fill_value=0)
self._check_double_roundtrip(ss3, tm.assert_frame_equal,
check_frame_type=True)
def test_float_index(self):
# GH #454
index = np.random.randn(10)
s = Series(np.random.randn(10), index=index)
self._check_roundtrip(s, tm.assert_series_equal)
def test_tuple_index(self):
# GH #492
col = np.arange(10)
idx = [(0., 1.), (2., 3.), (4., 5.)]
data = np.random.randn(30).reshape((3, 10))
DF = DataFrame(data, index=idx, columns=col)
with catch_warnings(record=True):
self._check_roundtrip(DF, tm.assert_frame_equal)
def test_index_types(self):
with catch_warnings(record=True):
values = np.random.randn(2)
func = lambda l, r: tm.assert_series_equal(l, r,
check_dtype=True,
check_index_type=True,
check_series_type=True)
with catch_warnings(record=True):
ser = Series(values, [0, 'y'])
self._check_roundtrip(ser, func)
with catch_warnings(record=True):
ser = Series(values, [datetime.datetime.today(), 0])
self._check_roundtrip(ser, func)
with catch_warnings(record=True):
ser = Series(values, ['y', 0])
self._check_roundtrip(ser, func)
with catch_warnings(record=True):
ser = Series(values, [datetime.date.today(), 'a'])
self._check_roundtrip(ser, func)
with catch_warnings(record=True):
ser = Series(values, [0, 'y'])
self._check_roundtrip(ser, func)
ser = Series(values, [datetime.datetime.today(), 0])
self._check_roundtrip(ser, func)
ser = Series(values, ['y', 0])
self._check_roundtrip(ser, func)
ser = Series(values, [datetime.date.today(), 'a'])
self._check_roundtrip(ser, func)
ser = Series(values, [1.23, 'b'])
self._check_roundtrip(ser, func)
ser = Series(values, [1, 1.53])
self._check_roundtrip(ser, func)
ser = Series(values, [1, 5])
self._check_roundtrip(ser, func)
ser = Series(values, [datetime.datetime(
2012, 1, 1), datetime.datetime(2012, 1, 2)])
self._check_roundtrip(ser, func)
def test_timeseries_preepoch(self):
dr = bdate_range('1/1/1940', '1/1/1960')
ts = Series(np.random.randn(len(dr)), index=dr)
try:
self._check_roundtrip(ts, tm.assert_series_equal)
except OverflowError:
pytest.skip('known failer on some windows platforms')
@pytest.mark.parametrize("compression", [
False, pytest.param(True, marks=td.skip_if_windows_python_3)
])
def test_frame(self, compression):
df = tm.makeDataFrame()
# put in some random NAs
df.values[0, 0] = np.nan
df.values[5, 3] = np.nan
self._check_roundtrip_table(df, tm.assert_frame_equal,
compression=compression)
self._check_roundtrip(df, tm.assert_frame_equal,
compression=compression)
tdf = tm.makeTimeDataFrame()
self._check_roundtrip(tdf, tm.assert_frame_equal,
compression=compression)
with ensure_clean_store(self.path) as store:
# not consolidated
df['foo'] = np.random.randn(len(df))
store['df'] = df
recons = store['df']
assert recons._data.is_consolidated()
# empty
self._check_roundtrip(df[:0], tm.assert_frame_equal)
def test_empty_series_frame(self):
s0 = Series()
s1 = Series(name='myseries')
df0 = DataFrame()
df1 = DataFrame(index=['a', 'b', 'c'])
df2 = DataFrame(columns=['d', 'e', 'f'])
self._check_roundtrip(s0, tm.assert_series_equal)
self._check_roundtrip(s1, tm.assert_series_equal)
self._check_roundtrip(df0, tm.assert_frame_equal)
self._check_roundtrip(df1, tm.assert_frame_equal)
self._check_roundtrip(df2, tm.assert_frame_equal)
def test_empty_series(self):
for dtype in [np.int64, np.float64, np.object, 'm8[ns]', 'M8[ns]']:
s = Series(dtype=dtype)
self._check_roundtrip(s, tm.assert_series_equal)
def test_can_serialize_dates(self):
rng = [x.date() for x in bdate_range('1/1/2000', '1/30/2000')]
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
self._check_roundtrip(frame, tm.assert_frame_equal)
def test_store_hierarchical(self):
index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
['one', 'two', 'three']],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['foo', 'bar'])
frame = DataFrame(np.random.randn(10, 3), index=index,
columns=['A', 'B', 'C'])
self._check_roundtrip(frame, tm.assert_frame_equal)
self._check_roundtrip(frame.T, tm.assert_frame_equal)
self._check_roundtrip(frame['A'], tm.assert_series_equal)
# check that the names are stored
with ensure_clean_store(self.path) as store:
store['frame'] = frame
recons = store['frame']
tm.assert_frame_equal(recons, frame)
def test_store_index_name(self):
df = tm.makeDataFrame()
df.index.name = 'foo'
with ensure_clean_store(self.path) as store:
store['frame'] = df
recons = store['frame']
tm.assert_frame_equal(recons, df)
def test_store_index_name_with_tz(self):
# GH 13884
df = pd.DataFrame({'A': [1, 2]})
df.index = pd.DatetimeIndex([1234567890123456787, 1234567890123456788])
df.index = df.index.tz_localize('UTC')
df.index.name = 'foo'
with ensure_clean_store(self.path) as store:
store.put('frame', df, format='table')
recons = store['frame']
tm.assert_frame_equal(recons, df)
@pytest.mark.parametrize('table_format', ['table', 'fixed'])
def test_store_index_name_numpy_str(self, table_format):
# GH #13492
idx = pd.Index(pd.to_datetime([datetime.date(2000, 1, 1),
datetime.date(2000, 1, 2)]),
name=u('cols\u05d2'))
idx1 = pd.Index(pd.to_datetime([datetime.date(2010, 1, 1),
datetime.date(2010, 1, 2)]),
name=u('rows\u05d0'))
df = pd.DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1)
# This used to fail, returning numpy strings instead of python strings.
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', format=table_format)
df2 = read_hdf(path, 'df')
assert_frame_equal(df, df2, check_names=True)
assert type(df2.index.name) == text_type
assert type(df2.columns.name) == text_type
def test_store_series_name(self):
df = tm.makeDataFrame()
series = df['A']
with ensure_clean_store(self.path) as store:
store['series'] = series
recons = store['series']
tm.assert_series_equal(recons, series)
@pytest.mark.parametrize("compression", [
False, pytest.param(True, marks=td.skip_if_windows_python_3)
])
def test_store_mixed(self, compression):
def _make_one():
df = tm.makeDataFrame()
df['obj1'] = 'foo'
df['obj2'] = 'bar'
df['bool1'] = df['A'] > 0
df['bool2'] = df['B'] > 0
df['int1'] = 1
df['int2'] = 2
return df._consolidate()
df1 = _make_one()
df2 = _make_one()
self._check_roundtrip(df1, tm.assert_frame_equal)
self._check_roundtrip(df2, tm.assert_frame_equal)
with ensure_clean_store(self.path) as store:
store['obj'] = df1
tm.assert_frame_equal(store['obj'], df1)
store['obj'] = df2
tm.assert_frame_equal(store['obj'], df2)
# check that can store Series of all of these types
self._check_roundtrip(df1['obj1'], tm.assert_series_equal,
compression=compression)
self._check_roundtrip(df1['bool1'], tm.assert_series_equal,
compression=compression)
self._check_roundtrip(df1['int1'], tm.assert_series_equal,
compression=compression)
def test_wide(self):
with catch_warnings(record=True):
wp = tm.makePanel()
self._check_roundtrip(wp, assert_panel_equal)
def test_select_with_dups(self):
# single dtypes
df = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B'])
df.index = date_range('20130101 9:30', periods=10, freq='T')
with ensure_clean_store(self.path) as store:
store.append('df', df)
result = store.select('df')
expected = df
assert_frame_equal(result, expected, by_blocks=True)
result = store.select('df', columns=df.columns)
expected = df
assert_frame_equal(result, expected, by_blocks=True)
result = store.select('df', columns=['A'])
expected = df.loc[:, ['A']]
assert_frame_equal(result, expected)
# dups across dtypes
df = concat([DataFrame(np.random.randn(10, 4),
columns=['A', 'A', 'B', 'B']),
DataFrame(np.random.randint(0, 10, size=20)
.reshape(10, 2),
columns=['A', 'C'])],
axis=1)
df.index = date_range('20130101 9:30', periods=10, freq='T')
with ensure_clean_store(self.path) as store:
store.append('df', df)
result = store.select('df')
expected = df
assert_frame_equal(result, expected, by_blocks=True)
result = store.select('df', columns=df.columns)
expected = df
assert_frame_equal(result, expected, by_blocks=True)
expected = df.loc[:, ['A']]
result = store.select('df', columns=['A'])
assert_frame_equal(result, expected, by_blocks=True)
expected = df.loc[:, ['B', 'A']]
result = store.select('df', columns=['B', 'A'])
assert_frame_equal(result, expected, by_blocks=True)
# duplicates on both index and columns
with ensure_clean_store(self.path) as store:
store.append('df', df)
store.append('df', df)
expected = df.loc[:, ['B', 'A']]
expected = concat([expected, expected])
result = store.select('df', columns=['B', 'A'])
assert_frame_equal(result, expected, by_blocks=True)
def test_wide_table_dups(self):
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
wp = tm.makePanel()
store.put('panel', wp, format='table')
store.put('panel', wp, format='table', append=True)
recons = store['panel']
assert_panel_equal(recons, wp)
def test_long(self):
def _check(left, right):
assert_panel_equal(left.to_panel(), right.to_panel())
with catch_warnings(record=True):
wp = tm.makePanel()
self._check_roundtrip(wp.to_frame(), _check)
def test_longpanel(self):
pass
def test_overwrite_node(self):
with ensure_clean_store(self.path) as store:
store['a'] = tm.makeTimeDataFrame()
ts = tm.makeTimeSeries()
store['a'] = ts
tm.assert_series_equal(store['a'], ts)
def test_sparse_with_compression(self):
# GH 2931
# make sparse dataframe
arr = np.random.binomial(n=1, p=.01, size=(1000, 10))
df = DataFrame(arr).to_sparse(fill_value=0)
# case 1: store uncompressed
self._check_double_roundtrip(df, tm.assert_frame_equal,
compression=False,
check_frame_type=True)
# case 2: store compressed (works)
self._check_double_roundtrip(df, tm.assert_frame_equal,
compression='zlib',
check_frame_type=True)
# set one series to be completely sparse
df[0] = np.zeros(1000)
# case 3: store df with completely sparse series uncompressed
self._check_double_roundtrip(df, tm.assert_frame_equal,
compression=False,
check_frame_type=True)
# case 4: try storing df with completely sparse series compressed
# (fails)
self._check_double_roundtrip(df, tm.assert_frame_equal,
compression='zlib',
check_frame_type=True)
def test_select(self):
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
wp = tm.makePanel()
# put/select ok
_maybe_remove(store, 'wp')
store.put('wp', wp, format='table')
store.select('wp')
# non-table ok (where = None)
_maybe_remove(store, 'wp')
store.put('wp2', wp)
store.select('wp2')
# selection on the non-indexable with a large number of columns
wp = Panel(np.random.randn(100, 100, 100),
items=['Item%03d' % i for i in range(100)],
major_axis=date_range('1/1/2000', periods=100),
minor_axis=['E%03d' % i for i in range(100)])
_maybe_remove(store, 'wp')
store.append('wp', wp)
items = ['Item%03d' % i for i in range(80)]
result = store.select('wp', 'items=items')
expected = wp.reindex(items=items)
assert_panel_equal(expected, result)
# selectin non-table with a where
# pytest.raises(ValueError, store.select,
# 'wp2', ('column', ['A', 'D']))
# select with columns=
df = tm.makeTimeDataFrame()
_maybe_remove(store, 'df')
store.append('df', df)
result = store.select('df', columns=['A', 'B'])
expected = df.reindex(columns=['A', 'B'])
tm.assert_frame_equal(expected, result)
# equivalentsly
result = store.select('df', [("columns=['A', 'B']")])
expected = df.reindex(columns=['A', 'B'])
tm.assert_frame_equal(expected, result)
# with a data column
_maybe_remove(store, 'df')
store.append('df', df, data_columns=['A'])
result = store.select('df', ['A > 0'], columns=['A', 'B'])
expected = df[df.A > 0].reindex(columns=['A', 'B'])
tm.assert_frame_equal(expected, result)
# all a data columns
_maybe_remove(store, 'df')
store.append('df', df, data_columns=True)
result = store.select('df', ['A > 0'], columns=['A', 'B'])
expected = df[df.A > 0].reindex(columns=['A', 'B'])
tm.assert_frame_equal(expected, result)
# with a data column, but different columns
_maybe_remove(store, 'df')
store.append('df', df, data_columns=['A'])
result = store.select('df', ['A > 0'], columns=['C', 'D'])
expected = df[df.A > 0].reindex(columns=['C', 'D'])
tm.assert_frame_equal(expected, result)
def test_select_dtypes(self):
with ensure_clean_store(self.path) as store:
# with a Timestamp data column (GH #2637)
df = DataFrame(dict(
ts=bdate_range('2012-01-01', periods=300),
A=np.random.randn(300)))
_maybe_remove(store, 'df')
store.append('df', df, data_columns=['ts', 'A'])
result = store.select('df', "ts>=Timestamp('2012-02-01')")
expected = df[df.ts >= Timestamp('2012-02-01')]
tm.assert_frame_equal(expected, result)
# bool columns (GH #2849)
df = DataFrame(np.random.randn(5, 2), columns=['A', 'B'])
df['object'] = 'foo'
df.loc[4:5, 'object'] = 'bar'
df['boolv'] = df['A'] > 0
_maybe_remove(store, 'df')
store.append('df', df, data_columns=True)
expected = (df[df.boolv == True] # noqa
.reindex(columns=['A', 'boolv']))
for v in [True, 'true', 1]:
result = store.select('df', 'boolv == %s' % str(v),
columns=['A', 'boolv'])
tm.assert_frame_equal(expected, result)
expected = (df[df.boolv == False] # noqa
.reindex(columns=['A', 'boolv']))
for v in [False, 'false', 0]:
result = store.select(
'df', 'boolv == %s' % str(v), columns=['A', 'boolv'])
tm.assert_frame_equal(expected, result)
# integer index
df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20)))
_maybe_remove(store, 'df_int')
store.append('df_int', df)
result = store.select(
'df_int', "index<10 and columns=['A']")
expected = df.reindex(index=list(df.index)[0:10], columns=['A'])
tm.assert_frame_equal(expected, result)
# float index
df = DataFrame(dict(A=np.random.rand(
20), B=np.random.rand(20), index=np.arange(20, dtype='f8')))
_maybe_remove(store, 'df_float')
store.append('df_float', df)
result = store.select(
'df_float', "index<10.0 and columns=['A']")
expected = df.reindex(index=list(df.index)[0:10], columns=['A'])
tm.assert_frame_equal(expected, result)
with ensure_clean_store(self.path) as store:
# floats w/o NaN
df = DataFrame(
dict(cols=range(11), values=range(11)), dtype='float64')
df['cols'] = (df['cols'] + 10).apply(str)
store.append('df1', df, data_columns=True)
result = store.select(
'df1', where='values>2.0')
expected = df[df['values'] > 2.0]
tm.assert_frame_equal(expected, result)
# floats with NaN
df.iloc[0] = np.nan
expected = df[df['values'] > 2.0]
store.append('df2', df, data_columns=True, index=False)
result = store.select(
'df2', where='values>2.0')
tm.assert_frame_equal(expected, result)
# https://github.com/PyTables/PyTables/issues/282
# bug in selection when 0th row has a np.nan and an index
# store.append('df3',df,data_columns=True)
# result = store.select(
# 'df3', where='values>2.0')
# tm.assert_frame_equal(expected, result)
# not in first position float with NaN ok too
df = DataFrame(
dict(cols=range(11), values=range(11)), dtype='float64')
df['cols'] = (df['cols'] + 10).apply(str)
df.iloc[1] = np.nan
expected = df[df['values'] > 2.0]
store.append('df4', df, data_columns=True)
result = store.select(
'df4', where='values>2.0')
tm.assert_frame_equal(expected, result)
# test selection with comparison against numpy scalar
# GH 11283
with ensure_clean_store(self.path) as store:
df = tm.makeDataFrame()
expected = df[df['A'] > 0]
store.append('df', df, data_columns=True)
np_zero = np.float64(0) # noqa
result = store.select('df', where=["A>np_zero"])
tm.assert_frame_equal(expected, result)
def test_select_with_many_inputs(self):
with ensure_clean_store(self.path) as store:
df = DataFrame(dict(ts=bdate_range('2012-01-01', periods=300),
A=np.random.randn(300),
B=range(300),
users=['a'] * 50 + ['b'] * 50 + ['c'] * 100 +
['a%03d' % i for i in range(100)]))
_maybe_remove(store, 'df')
store.append('df', df, data_columns=['ts', 'A', 'B', 'users'])
# regular select
result = store.select('df', "ts>=Timestamp('2012-02-01')")
expected = df[df.ts >= Timestamp('2012-02-01')]
tm.assert_frame_equal(expected, result)
# small selector
result = store.select(
'df',
"ts>=Timestamp('2012-02-01') & users=['a','b','c']")
expected = df[(df.ts >= Timestamp('2012-02-01')) &
df.users.isin(['a', 'b', 'c'])]
tm.assert_frame_equal(expected, result)
# big selector along the columns
selector = ['a', 'b', 'c'] + ['a%03d' % i for i in range(60)]
result = store.select(
'df',
"ts>=Timestamp('2012-02-01') and users=selector")
expected = df[(df.ts >= Timestamp('2012-02-01')) &
df.users.isin(selector)]
tm.assert_frame_equal(expected, result)
selector = range(100, 200)
result = store.select('df', 'B=selector')
expected = df[df.B.isin(selector)]
tm.assert_frame_equal(expected, result)
assert len(result) == 100
# big selector along the index
selector = Index(df.ts[0:100].values)
result = store.select('df', 'ts=selector')
expected = df[df.ts.isin(selector.values)]
tm.assert_frame_equal(expected, result)
assert len(result) == 100
def test_select_iterator(self):
# single table
with ensure_clean_store(self.path) as store:
df = tm.makeTimeDataFrame(500)
_maybe_remove(store, 'df')
store.append('df', df)
expected = store.select('df')
results = [s for s in store.select('df', iterator=True)]
result = concat(results)
tm.assert_frame_equal(expected, result)
results = [s for s in store.select('df', chunksize=100)]
assert len(results) == 5
result = concat(results)
tm.assert_frame_equal(expected, result)
results = [s for s in store.select('df', chunksize=150)]
result = concat(results)
tm.assert_frame_equal(result, expected)
with ensure_clean_path(self.path) as path:
df = tm.makeTimeDataFrame(500)
df.to_hdf(path, 'df_non_table')
pytest.raises(TypeError, read_hdf, path,
'df_non_table', chunksize=100)
pytest.raises(TypeError, read_hdf, path,
'df_non_table', iterator=True)
with ensure_clean_path(self.path) as path:
df = tm.makeTimeDataFrame(500)
df.to_hdf(path, 'df', format='table')
results = [s for s in read_hdf(path, 'df', chunksize=100)]
result = concat(results)
assert len(results) == 5
tm.assert_frame_equal(result, df)
tm.assert_frame_equal(result, read_hdf(path, 'df'))
# multiple
with ensure_clean_store(self.path) as store:
df1 = tm.makeTimeDataFrame(500)
store.append('df1', df1, data_columns=True)
df2 = tm.makeTimeDataFrame(500).rename(
columns=lambda x: "%s_2" % x)
df2['foo'] = 'bar'
store.append('df2', df2)
df = concat([df1, df2], axis=1)
# full selection
expected = store.select_as_multiple(
['df1', 'df2'], selector='df1')
results = [s for s in store.select_as_multiple(
['df1', 'df2'], selector='df1', chunksize=150)]
result = concat(results)
tm.assert_frame_equal(expected, result)
def test_select_iterator_complete_8014(self):
# GH 8014
# using iterator and where clause
chunksize = 1e4
# no iterator
with ensure_clean_store(self.path) as store:
expected = tm.makeTimeDataFrame(100064, 'S')
_maybe_remove(store, 'df')
store.append('df', expected)
beg_dt = expected.index[0]
end_dt = expected.index[-1]
# select w/o iteration and no where clause works
result = store.select('df')
tm.assert_frame_equal(expected, result)
# select w/o iterator and where clause, single term, begin
# of range, works
where = "index >= '%s'" % beg_dt
result = store.select('df', where=where)
tm.assert_frame_equal(expected, result)
# select w/o iterator and where clause, single term, end
# of range, works
where = "index <= '%s'" % end_dt
result = store.select('df', where=where)
tm.assert_frame_equal(expected, result)
# select w/o iterator and where clause, inclusive range,
# works
where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt)
result = store.select('df', where=where)
tm.assert_frame_equal(expected, result)
# with iterator, full range
with ensure_clean_store(self.path) as store:
expected = tm.makeTimeDataFrame(100064, 'S')
_maybe_remove(store, 'df')
store.append('df', expected)
beg_dt = expected.index[0]
end_dt = expected.index[-1]
# select w/iterator and no where clause works
results = [s for s in store.select('df', chunksize=chunksize)]
result = concat(results)
tm.assert_frame_equal(expected, result)
# select w/iterator and where clause, single term, begin of range
where = "index >= '%s'" % beg_dt
results = [s for s in store.select(
'df', where=where, chunksize=chunksize)]
result = concat(results)
tm.assert_frame_equal(expected, result)
# select w/iterator and where clause, single term, end of range
where = "index <= '%s'" % end_dt
results = [s for s in store.select(
'df', where=where, chunksize=chunksize)]
result = concat(results)
tm.assert_frame_equal(expected, result)
# select w/iterator and where clause, inclusive range
where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt)
results = [s for s in store.select(
'df', where=where, chunksize=chunksize)]
result = concat(results)
tm.assert_frame_equal(expected, result)
def test_select_iterator_non_complete_8014(self):
# GH 8014
# using iterator and where clause
chunksize = 1e4
# with iterator, non complete range
with ensure_clean_store(self.path) as store:
expected = tm.makeTimeDataFrame(100064, 'S')
_maybe_remove(store, 'df')
store.append('df', expected)
beg_dt = expected.index[1]
end_dt = expected.index[-2]
# select w/iterator and where clause, single term, begin of range
where = "index >= '%s'" % beg_dt
results = [s for s in store.select(
'df', where=where, chunksize=chunksize)]
result = concat(results)
rexpected = expected[expected.index >= beg_dt]
tm.assert_frame_equal(rexpected, result)
# select w/iterator and where clause, single term, end of range
where = "index <= '%s'" % end_dt
results = [s for s in store.select(
'df', where=where, chunksize=chunksize)]
result = concat(results)
rexpected = expected[expected.index <= end_dt]
tm.assert_frame_equal(rexpected, result)
# select w/iterator and where clause, inclusive range
where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt)
results = [s for s in store.select(
'df', where=where, chunksize=chunksize)]
result = concat(results)
rexpected = expected[(expected.index >= beg_dt) &
(expected.index <= end_dt)]
tm.assert_frame_equal(rexpected, result)
# with iterator, empty where
with ensure_clean_store(self.path) as store:
expected = tm.makeTimeDataFrame(100064, 'S')
_maybe_remove(store, 'df')
store.append('df', expected)
end_dt = expected.index[-1]
# select w/iterator and where clause, single term, begin of range
where = "index > '%s'" % end_dt
results = [s for s in store.select(
'df', where=where, chunksize=chunksize)]
assert 0 == len(results)
def test_select_iterator_many_empty_frames(self):
# GH 8014
# using iterator and where clause can return many empty
# frames.
chunksize = int(1e4)
# with iterator, range limited to the first chunk
with ensure_clean_store(self.path) as store:
expected = tm.makeTimeDataFrame(100000, 'S')
_maybe_remove(store, 'df')
store.append('df', expected)
beg_dt = expected.index[0]
end_dt = expected.index[chunksize - 1]
# select w/iterator and where clause, single term, begin of range
where = "index >= '%s'" % beg_dt
results = [s for s in store.select(
'df', where=where, chunksize=chunksize)]
result = concat(results)
rexpected = expected[expected.index >= beg_dt]
tm.assert_frame_equal(rexpected, result)
# select w/iterator and where clause, single term, end of range
where = "index <= '%s'" % end_dt
results = [s for s in store.select(
'df', where=where, chunksize=chunksize)]
assert len(results) == 1
result = concat(results)
rexpected = expected[expected.index <= end_dt]
tm.assert_frame_equal(rexpected, result)
# select w/iterator and where clause, inclusive range
where = "index >= '%s' & index <= '%s'" % (beg_dt, end_dt)
results = [s for s in store.select(
'df', where=where, chunksize=chunksize)]
# should be 1, is 10
assert len(results) == 1
result = concat(results)
rexpected = expected[(expected.index >= beg_dt) &
(expected.index <= end_dt)]
tm.assert_frame_equal(rexpected, result)
# select w/iterator and where clause which selects
# *nothing*.
#
# To be consistent with Python idiom I suggest this should
# return [] e.g. `for e in []: print True` never prints
# True.
where = "index <= '%s' & index >= '%s'" % (beg_dt, end_dt)
results = [s for s in store.select(
'df', where=where, chunksize=chunksize)]
# should be []
assert len(results) == 0
def test_retain_index_attributes(self):
# GH 3499, losing frequency info on index recreation
df = DataFrame(dict(
A=Series(lrange(3),
index=date_range('2000-1-1', periods=3, freq='H'))))
with ensure_clean_store(self.path) as store:
_maybe_remove(store, 'data')
store.put('data', df, format='table')
result = store.get('data')
tm.assert_frame_equal(df, result)
for attr in ['freq', 'tz', 'name']:
for idx in ['index', 'columns']:
assert (getattr(getattr(df, idx), attr, None) ==
getattr(getattr(result, idx), attr, None))
# try to append a table with a different frequency
with catch_warnings(record=True):
df2 = DataFrame(dict(
A=Series(lrange(3),
index=date_range('2002-1-1',
periods=3, freq='D'))))
store.append('data', df2)
assert store.get_storer('data').info['index']['freq'] is None
# this is ok
_maybe_remove(store, 'df2')
df2 = DataFrame(dict(
A=Series(lrange(3),
index=[Timestamp('20010101'), Timestamp('20010102'),
Timestamp('20020101')])))
store.append('df2', df2)
df3 = DataFrame(dict(
A=Series(lrange(3),
index=date_range('2002-1-1', periods=3,
freq='D'))))
store.append('df2', df3)
def test_retain_index_attributes2(self):
with ensure_clean_path(self.path) as path:
with catch_warnings(record=True):
df = DataFrame(dict(
A=Series(lrange(3),
index=date_range('2000-1-1',
periods=3, freq='H'))))
df.to_hdf(path, 'data', mode='w', append=True)
df2 = DataFrame(dict(
A=Series(lrange(3),
index=date_range('2002-1-1', periods=3,
freq='D'))))
df2.to_hdf(path, 'data', append=True)
idx = date_range('2000-1-1', periods=3, freq='H')
idx.name = 'foo'
df = DataFrame(dict(A=Series(lrange(3), index=idx)))
df.to_hdf(path, 'data', mode='w', append=True)
assert read_hdf(path, 'data').index.name == 'foo'
with catch_warnings(record=True):
idx2 = date_range('2001-1-1', periods=3, freq='H')
idx2.name = 'bar'
df2 = DataFrame(dict(A=Series(lrange(3), index=idx2)))
df2.to_hdf(path, 'data', append=True)
assert read_hdf(path, 'data').index.name is None
def test_panel_select(self):
with ensure_clean_store(self.path) as store:
with catch_warnings(record=True):
wp = tm.makePanel()
store.put('wp', wp, format='table')
date = wp.major_axis[len(wp.major_axis) // 2]
crit1 = ('major_axis>=date')
crit2 = ("minor_axis=['A', 'D']")
result = store.select('wp', [crit1, crit2])
expected = wp.truncate(before=date).reindex(minor=['A', 'D'])
assert_panel_equal(result, expected)
result = store.select(
'wp', ['major_axis>="20000124"',
("minor_axis=['A', 'B']")])
expected = wp.truncate(
before='20000124').reindex(minor=['A', 'B'])
assert_panel_equal(result, expected)
def test_frame_select(self):
df = tm.makeTimeDataFrame()
with ensure_clean_store(self.path) as store:
store.put('frame', df, format='table')
date = df.index[len(df) // 2]
crit1 = Term('index>=date')
assert crit1.env.scope['date'] == date
crit2 = ("columns=['A', 'D']")
crit3 = ('columns=A')
result = store.select('frame', [crit1, crit2])
expected = df.loc[date:, ['A', 'D']]
tm.assert_frame_equal(result, expected)
result = store.select('frame', [crit3])
expected = df.loc[:, ['A']]
tm.assert_frame_equal(result, expected)
# invalid terms
df = tm.makeTimeDataFrame()
store.append('df_time', df)
pytest.raises(
ValueError, store.select, 'df_time', "index>0")
# can't select if not written as table
# store['frame'] = df
# pytest.raises(ValueError, store.select,
# 'frame', [crit1, crit2])
def test_frame_select_complex(self):
# select via complex criteria
df = tm.makeTimeDataFrame()
df['string'] = 'foo'
df.loc[df.index[0:4], 'string'] = 'bar'
with ensure_clean_store(self.path) as store:
store.put('df', df, format='table', data_columns=['string'])
# empty
result = store.select('df', 'index>df.index[3] & string="bar"')
expected = df.loc[(df.index > df.index[3]) & (df.string == 'bar')]
tm.assert_frame_equal(result, expected)
result = store.select('df', 'index>df.index[3] & string="foo"')
expected = df.loc[(df.index > df.index[3]) & (df.string == 'foo')]
tm.assert_frame_equal(result, expected)
# or
result = store.select('df', 'index>df.index[3] | string="bar"')
expected = df.loc[(df.index > df.index[3]) | (df.string == 'bar')]
tm.assert_frame_equal(result, expected)
result = store.select('df', '(index>df.index[3] & '
'index<=df.index[6]) | string="bar"')
expected = df.loc[((df.index > df.index[3]) & (
df.index <= df.index[6])) | (df.string == 'bar')]
tm.assert_frame_equal(result, expected)
# invert
result = store.select('df', 'string!="bar"')
expected = df.loc[df.string != 'bar']
tm.assert_frame_equal(result, expected)
# invert not implemented in numexpr :(
pytest.raises(NotImplementedError,
store.select, 'df', '~(string="bar")')
# invert ok for filters
result = store.select('df', "~(columns=['A','B'])")
expected = df.loc[:, df.columns.difference(['A', 'B'])]
tm.assert_frame_equal(result, expected)
# in
result = store.select(
'df', "index>df.index[3] & columns in ['A','B']")
expected = df.loc[df.index > df.index[3]].reindex(columns=[
'A', 'B'])
tm.assert_frame_equal(result, expected)
def test_frame_select_complex2(self):
with ensure_clean_path(['parms.hdf', 'hist.hdf']) as paths:
pp, hh = paths
# use non-trivial selection criteria
parms = DataFrame({'A': [1, 1, 2, 2, 3]})
parms.to_hdf(pp, 'df', mode='w',
format='table', data_columns=['A'])
selection = read_hdf(pp, 'df', where='A=[2,3]')
hist = DataFrame(np.random.randn(25, 1),
columns=['data'],
index=MultiIndex.from_tuples(
[(i, j) for i in range(5)
for j in range(5)],
names=['l1', 'l2']))
hist.to_hdf(hh, 'df', mode='w', format='table')
expected = read_hdf(hh, 'df', where='l1=[2, 3, 4]')
# sccope with list like
l = selection.index.tolist() # noqa
store = HDFStore(hh)
result = store.select('df', where='l1=l')
assert_frame_equal(result, expected)
store.close()
result = read_hdf(hh, 'df', where='l1=l')
assert_frame_equal(result, expected)
# index
index = selection.index # noqa
result = read_hdf(hh, 'df', where='l1=index')
assert_frame_equal(result, expected)
result = read_hdf(hh, 'df', where='l1=selection.index')
assert_frame_equal(result, expected)
result = read_hdf(hh, 'df', where='l1=selection.index.tolist()')
assert_frame_equal(result, expected)
result = read_hdf(hh, 'df', where='l1=list(selection.index)')
assert_frame_equal(result, expected)
# sccope with index
store = HDFStore(hh)
result = store.select('df', where='l1=index')
assert_frame_equal(result, expected)
result = store.select('df', where='l1=selection.index')
assert_frame_equal(result, expected)
result = store.select('df', where='l1=selection.index.tolist()')
assert_frame_equal(result, expected)
result = store.select('df', where='l1=list(selection.index)')
assert_frame_equal(result, expected)
store.close()
def test_invalid_filtering(self):
# can't use more than one filter (atm)
df = tm.makeTimeDataFrame()
with ensure_clean_store(self.path) as store:
store.put('df', df, format='table')
# not implemented
pytest.raises(NotImplementedError, store.select,
'df', "columns=['A'] | columns=['B']")
# in theory we could deal with this
pytest.raises(NotImplementedError, store.select,
'df', "columns=['A','B'] & columns=['C']")
def test_string_select(self):
# GH 2973
with ensure_clean_store(self.path) as store:
df = tm.makeTimeDataFrame()
# test string ==/!=
df['x'] = 'none'
df.loc[2:7, 'x'] = ''
store.append('df', df, data_columns=['x'])
result = store.select('df', 'x=none')
expected = df[df.x == 'none']
assert_frame_equal(result, expected)
try:
result = store.select('df', 'x!=none')
expected = df[df.x != 'none']
assert_frame_equal(result, expected)
except Exception as detail:
pprint_thing("[{0}]".format(detail))
pprint_thing(store)
pprint_thing(expected)
df2 = df.copy()
df2.loc[df2.x == '', 'x'] = np.nan
store.append('df2', df2, data_columns=['x'])
result = store.select('df2', 'x!=none')
expected = df2[isna(df2.x)]
assert_frame_equal(result, expected)
# int ==/!=
df['int'] = 1
df.loc[2:7, 'int'] = 2
store.append('df3', df, data_columns=['int'])
result = store.select('df3', 'int=2')
expected = df[df.int == 2]
assert_frame_equal(result, expected)
result = store.select('df3', 'int!=2')
expected = df[df.int != 2]
assert_frame_equal(result, expected)
def test_read_column(self):
df = tm.makeTimeDataFrame()
with ensure_clean_store(self.path) as store:
_maybe_remove(store, 'df')
# GH 17912
# HDFStore.select_column should raise a KeyError
# exception if the key is not a valid store
with pytest.raises(KeyError,
message='No object named index in the file'):
store.select_column('df', 'index')
store.append('df', df)
# error
pytest.raises(KeyError, store.select_column, 'df', 'foo')
def f():
store.select_column('df', 'index', where=['index>5'])
pytest.raises(Exception, f)
# valid
result = store.select_column('df', 'index')
tm.assert_almost_equal(result.values, Series(df.index).values)
assert isinstance(result, Series)
# not a data indexable column
pytest.raises(
ValueError, store.select_column, 'df', 'values_block_0')
# a data column
df2 = df.copy()
df2['string'] = 'foo'
store.append('df2', df2, data_columns=['string'])
result = store.select_column('df2', 'string')
tm.assert_almost_equal(result.values, df2['string'].values)
# a data column with NaNs, result excludes the NaNs
df3 = df.copy()
df3['string'] = 'foo'
df3.loc[4:6, 'string'] = np.nan
store.append('df3', df3, data_columns=['string'])
result = store.select_column('df3', 'string')
tm.assert_almost_equal(result.values, df3['string'].values)
# start/stop
result = store.select_column('df3', 'string', start=2)
tm.assert_almost_equal(result.values, df3['string'].values[2:])
result = store.select_column('df3', 'string', start=-2)
tm.assert_almost_equal(result.values, df3['string'].values[-2:])
result = store.select_column('df3', 'string', stop=2)
tm.assert_almost_equal(result.values, df3['string'].values[:2])
result = store.select_column('df3', 'string', stop=-2)
tm.assert_almost_equal(result.values, df3['string'].values[:-2])
result = store.select_column('df3', 'string', start=2, stop=-2)
tm.assert_almost_equal(result.values, df3['string'].values[2:-2])
result = store.select_column('df3', 'string', start=-2, stop=2)
tm.assert_almost_equal(result.values, df3['string'].values[-2:2])
# GH 10392 - make sure column name is preserved
df4 = DataFrame({'A': np.random.randn(10), 'B': 'foo'})
store.append('df4', df4, data_columns=True)
expected = df4['B']
result = store.select_column('df4', 'B')
tm.assert_series_equal(result, expected)
def test_coordinates(self):
df = tm.makeTimeDataFrame()
with ensure_clean_store(self.path) as store:
_maybe_remove(store, 'df')
store.append('df', df)
# all
c = store.select_as_coordinates('df')
assert((c.values == np.arange(len(df.index))).all())
# get coordinates back & test vs frame
_maybe_remove(store, 'df')
df = DataFrame(dict(A=lrange(5), B=lrange(5)))
store.append('df', df)
c = store.select_as_coordinates('df', ['index<3'])
assert((c.values == np.arange(3)).all())
result = store.select('df', where=c)
expected = df.loc[0:2, :]
tm.assert_frame_equal(result, expected)
c = store.select_as_coordinates('df', ['index>=3', 'index<=4'])
assert((c.values == np.arange(2) + 3).all())
result = store.select('df', where=c)
expected = df.loc[3:4, :]
tm.assert_frame_equal(result, expected)
assert isinstance(c, Index)
# multiple tables
_maybe_remove(store, 'df1')
_maybe_remove(store, 'df2')
df1 = tm.makeTimeDataFrame()
df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x)
store.append('df1', df1, data_columns=['A', 'B'])
store.append('df2', df2)
c = store.select_as_coordinates('df1', ['A>0', 'B>0'])
df1_result = store.select('df1', c)
df2_result = store.select('df2', c)
result = concat([df1_result, df2_result], axis=1)
expected = concat([df1, df2], axis=1)
expected = expected[(expected.A > 0) & (expected.B > 0)]
tm.assert_frame_equal(result, expected)
# pass array/mask as the coordinates
with ensure_clean_store(self.path) as store:
df = DataFrame(np.random.randn(1000, 2),
index=date_range('20000101', periods=1000))
store.append('df', df)
c = store.select_column('df', 'index')
where = c[DatetimeIndex(c).month == 5].index
expected = df.iloc[where]
# locations
result = store.select('df', where=where)
tm.assert_frame_equal(result, expected)
# boolean
result = store.select('df', where=where)
tm.assert_frame_equal(result, expected)
# invalid
pytest.raises(ValueError, store.select, 'df',
where=np.arange(len(df), dtype='float64'))
pytest.raises(ValueError, store.select, 'df',
where=np.arange(len(df) + 1))
pytest.raises(ValueError, store.select, 'df',
where=np.arange(len(df)), start=5)
pytest.raises(ValueError, store.select, 'df',
where=np.arange(len(df)), start=5, stop=10)
# selection with filter
selection = date_range('20000101', periods=500)
result = store.select('df', where='index in selection')
expected = df[df.index.isin(selection)]
tm.assert_frame_equal(result, expected)
# list
df = DataFrame(np.random.randn(10, 2))
store.append('df2', df)
result = store.select('df2', where=[0, 3, 5])
expected = df.iloc[[0, 3, 5]]
tm.assert_frame_equal(result, expected)
# boolean
where = [True] * 10
where[-2] = False
result = store.select('df2', where=where)
expected = df.loc[where]
tm.assert_frame_equal(result, expected)
# start/stop
result = store.select('df2', start=5, stop=10)
expected = df[5:10]
tm.assert_frame_equal(result, expected)
def test_append_to_multiple(self):
df1 = tm.makeTimeDataFrame()
df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x)
df2['foo'] = 'bar'
df = concat([df1, df2], axis=1)
with ensure_clean_store(self.path) as store:
# exceptions
pytest.raises(ValueError, store.append_to_multiple,
{'df1': ['A', 'B'], 'df2': None}, df,
selector='df3')
pytest.raises(ValueError, store.append_to_multiple,
{'df1': None, 'df2': None}, df, selector='df3')
pytest.raises(
ValueError, store.append_to_multiple, 'df1', df, 'df1')
# regular operation
store.append_to_multiple(
{'df1': ['A', 'B'], 'df2': None}, df, selector='df1')
result = store.select_as_multiple(
['df1', 'df2'], where=['A>0', 'B>0'], selector='df1')
expected = df[(df.A > 0) & (df.B > 0)]
tm.assert_frame_equal(result, expected)
def test_append_to_multiple_dropna(self):
df1 = tm.makeTimeDataFrame()
df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x)
df1.iloc[1, df1.columns.get_indexer(['A', 'B'])] = np.nan
df = concat([df1, df2], axis=1)
with ensure_clean_store(self.path) as store:
# dropna=True should guarantee rows are synchronized
store.append_to_multiple(
{'df1': ['A', 'B'], 'df2': None}, df, selector='df1',
dropna=True)
result = store.select_as_multiple(['df1', 'df2'])
expected = df.dropna()
tm.assert_frame_equal(result, expected)
tm.assert_index_equal(store.select('df1').index,
store.select('df2').index)
@pytest.mark.xfail(run=False,
reason="append_to_multiple_dropna_false "
"is not raising as failed")
def test_append_to_multiple_dropna_false(self):
df1 = tm.makeTimeDataFrame()
df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x)
df1.iloc[1, df1.columns.get_indexer(['A', 'B'])] = np.nan
df = concat([df1, df2], axis=1)
with ensure_clean_store(self.path) as store:
# dropna=False shouldn't synchronize row indexes
store.append_to_multiple(
{'df1a': ['A', 'B'], 'df2a': None}, df, selector='df1a',
dropna=False)
with pytest.raises(ValueError):
store.select_as_multiple(['df1a', 'df2a'])
assert not store.select('df1a').index.equals(
store.select('df2a').index)
def test_select_as_multiple(self):
df1 = tm.makeTimeDataFrame()
df2 = tm.makeTimeDataFrame().rename(columns=lambda x: "%s_2" % x)
df2['foo'] = 'bar'
with ensure_clean_store(self.path) as store:
# no tables stored
pytest.raises(Exception, store.select_as_multiple,
None, where=['A>0', 'B>0'], selector='df1')
store.append('df1', df1, data_columns=['A', 'B'])
store.append('df2', df2)
# exceptions
pytest.raises(Exception, store.select_as_multiple,
None, where=['A>0', 'B>0'], selector='df1')
pytest.raises(Exception, store.select_as_multiple,
[None], where=['A>0', 'B>0'], selector='df1')
pytest.raises(KeyError, store.select_as_multiple,
['df1', 'df3'], where=['A>0', 'B>0'],
selector='df1')
pytest.raises(KeyError, store.select_as_multiple,
['df3'], where=['A>0', 'B>0'], selector='df1')
pytest.raises(KeyError, store.select_as_multiple,
['df1', 'df2'], where=['A>0', 'B>0'],
selector='df4')
# default select
result = store.select('df1', ['A>0', 'B>0'])
expected = store.select_as_multiple(
['df1'], where=['A>0', 'B>0'], selector='df1')
tm.assert_frame_equal(result, expected)
expected = store.select_as_multiple(
'df1', where=['A>0', 'B>0'], selector='df1')
tm.assert_frame_equal(result, expected)
# multiple
result = store.select_as_multiple(
['df1', 'df2'], where=['A>0', 'B>0'], selector='df1')
expected = concat([df1, df2], axis=1)
expected = expected[(expected.A > 0) & (expected.B > 0)]
tm.assert_frame_equal(result, expected)
# multiple (diff selector)
result = store.select_as_multiple(
['df1', 'df2'], where='index>df2.index[4]', selector='df2')
expected = concat([df1, df2], axis=1)
expected = expected[5:]
tm.assert_frame_equal(result, expected)
# test excpection for diff rows
store.append('df3', tm.makeTimeDataFrame(nper=50))
pytest.raises(ValueError, store.select_as_multiple,
['df1', 'df3'], where=['A>0', 'B>0'],
selector='df1')
@pytest.mark.skipif(
LooseVersion(tables.__version__) < LooseVersion('3.1.0'),
reason=("tables version does not support fix for nan selection "
"bug: GH 4858"))
def test_nan_selection_bug_4858(self):
with ensure_clean_store(self.path) as store:
df = DataFrame(dict(cols=range(6), values=range(6)),
dtype='float64')
df['cols'] = (df['cols'] + 10).apply(str)
df.iloc[0] = np.nan
expected = DataFrame(dict(cols=['13.0', '14.0', '15.0'], values=[
3., 4., 5.]), index=[3, 4, 5])
# write w/o the index on that particular column
store.append('df', df, data_columns=True, index=['cols'])
result = store.select('df', where='values>2.0')
assert_frame_equal(result, expected)
def test_start_stop_table(self):
with ensure_clean_store(self.path) as store:
# table
df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20)))
store.append('df', df)
result = store.select(
'df', "columns=['A']", start=0, stop=5)
expected = df.loc[0:4, ['A']]
tm.assert_frame_equal(result, expected)
# out of range
result = store.select(
'df', "columns=['A']", start=30, stop=40)
assert len(result) == 0
expected = df.loc[30:40, ['A']]
tm.assert_frame_equal(result, expected)
def test_start_stop_multiple(self):
# GH 16209
with ensure_clean_store(self.path) as store:
df = DataFrame({"foo": [1, 2], "bar": [1, 2]})
store.append_to_multiple({'selector': ['foo'], 'data': None}, df,
selector='selector')
result = store.select_as_multiple(['selector', 'data'],
selector='selector', start=0,
stop=1)
expected = df.loc[[0], ['foo', 'bar']]
tm.assert_frame_equal(result, expected)
def test_start_stop_fixed(self):
with ensure_clean_store(self.path) as store:
# fixed, GH 8287
df = DataFrame(dict(A=np.random.rand(20),
B=np.random.rand(20)),
index=pd.date_range('20130101', periods=20))
store.put('df', df)
result = store.select(
'df', start=0, stop=5)
expected = df.iloc[0:5, :]
tm.assert_frame_equal(result, expected)
result = store.select(
'df', start=5, stop=10)
expected = df.iloc[5:10, :]
tm.assert_frame_equal(result, expected)
# out of range
result = store.select(
'df', start=30, stop=40)
expected = df.iloc[30:40, :]
tm.assert_frame_equal(result, expected)
# series
s = df.A
store.put('s', s)
result = store.select('s', start=0, stop=5)
expected = s.iloc[0:5]
tm.assert_series_equal(result, expected)
result = store.select('s', start=5, stop=10)
expected = s.iloc[5:10]
tm.assert_series_equal(result, expected)
# sparse; not implemented
df = tm.makeDataFrame()
df.iloc[3:5, 1:3] = np.nan
df.iloc[8:10, -2] = np.nan
dfs = df.to_sparse()
store.put('dfs', dfs)
with pytest.raises(NotImplementedError):
store.select('dfs', start=0, stop=5)
def test_select_filter_corner(self):
df = DataFrame(np.random.randn(50, 100))
df.index = ['%.3d' % c for c in df.index]
df.columns = ['%.3d' % c for c in df.columns]
with ensure_clean_store(self.path) as store:
store.put('frame', df, format='table')
crit = 'columns=df.columns[:75]'
result = store.select('frame', [crit])
tm.assert_frame_equal(result, df.loc[:, df.columns[:75]])
crit = 'columns=df.columns[:75:2]'
result = store.select('frame', [crit])
tm.assert_frame_equal(result, df.loc[:, df.columns[:75:2]])
def test_path_pathlib(self):
df = tm.makeDataFrame()
result = tm.round_trip_pathlib(
lambda p: df.to_hdf(p, 'df'),
lambda p: pd.read_hdf(p, 'df'))
tm.assert_frame_equal(df, result)
@pytest.mark.parametrize('start, stop', [(0, 2), (1, 2), (None, None)])
def test_contiguous_mixed_data_table(self, start, stop):
# GH 17021
# ValueError when reading a contiguous mixed-data table ft. VLArray
df = DataFrame({'a': Series([20111010, 20111011, 20111012]),
'b': Series(['ab', 'cd', 'ab'])})
with ensure_clean_store(self.path) as store:
store.append('test_dataset', df)
result = store.select('test_dataset', start=start, stop=stop)
assert_frame_equal(df[start:stop], result)
def test_path_pathlib_hdfstore(self):
df = tm.makeDataFrame()
def writer(path):
with pd.HDFStore(path) as store:
df.to_hdf(store, 'df')
def reader(path):
with pd.HDFStore(path) as store:
return pd.read_hdf(store, 'df')
result = tm.round_trip_pathlib(writer, reader)
tm.assert_frame_equal(df, result)
def test_pickle_path_localpath(self):
df = tm.makeDataFrame()
result = tm.round_trip_pathlib(
lambda p: df.to_hdf(p, 'df'),
lambda p: pd.read_hdf(p, 'df'))
tm.assert_frame_equal(df, result)
def test_path_localpath_hdfstore(self):
df = tm.makeDataFrame()
def writer(path):
with pd.HDFStore(path) as store:
df.to_hdf(store, 'df')
def reader(path):
with pd.HDFStore(path) as store:
return pd.read_hdf(store, 'df')
result = tm.round_trip_localpath(writer, reader)
tm.assert_frame_equal(df, result)
def _check_roundtrip(self, obj, comparator, compression=False, **kwargs):
options = {}
if compression:
options['complib'] = _default_compressor
with ensure_clean_store(self.path, 'w', **options) as store:
store['obj'] = obj
retrieved = store['obj']
comparator(retrieved, obj, **kwargs)
def _check_double_roundtrip(self, obj, comparator, compression=False,
**kwargs):
options = {}
if compression:
options['complib'] = compression or _default_compressor
with ensure_clean_store(self.path, 'w', **options) as store:
store['obj'] = obj
retrieved = store['obj']
comparator(retrieved, obj, **kwargs)
store['obj'] = retrieved
again = store['obj']
comparator(again, obj, **kwargs)
def _check_roundtrip_table(self, obj, comparator, compression=False):
options = {}
if compression:
options['complib'] = _default_compressor
with ensure_clean_store(self.path, 'w', **options) as store:
store.put('obj', obj, format='table')
retrieved = store['obj']
comparator(retrieved, obj)
def test_multiple_open_close(self):
# gh-4409: open & close multiple times
with ensure_clean_path(self.path) as path:
df = tm.makeDataFrame()
df.to_hdf(path, 'df', mode='w', format='table')
# single
store = HDFStore(path)
assert 'CLOSED' not in store.info()
assert store.is_open
store.close()
assert 'CLOSED' in store.info()
assert not store.is_open
with ensure_clean_path(self.path) as path:
if pytables._table_file_open_policy_is_strict:
# multiples
store1 = HDFStore(path)
def f():
HDFStore(path)
pytest.raises(ValueError, f)
store1.close()
else:
# multiples
store1 = HDFStore(path)
store2 = HDFStore(path)
assert 'CLOSED' not in store1.info()
assert 'CLOSED' not in store2.info()
assert store1.is_open
assert store2.is_open
store1.close()
assert 'CLOSED' in store1.info()
assert not store1.is_open
assert 'CLOSED' not in store2.info()
assert store2.is_open
store2.close()
assert 'CLOSED' in store1.info()
assert 'CLOSED' in store2.info()
assert not store1.is_open
assert not store2.is_open
# nested close
store = HDFStore(path, mode='w')
store.append('df', df)
store2 = HDFStore(path)
store2.append('df2', df)
store2.close()
assert 'CLOSED' in store2.info()
assert not store2.is_open
store.close()
assert 'CLOSED' in store.info()
assert not store.is_open
# double closing
store = HDFStore(path, mode='w')
store.append('df', df)
store2 = HDFStore(path)
store.close()
assert 'CLOSED' in store.info()
assert not store.is_open
store2.close()
assert 'CLOSED' in store2.info()
assert not store2.is_open
# ops on a closed store
with ensure_clean_path(self.path) as path:
df = tm.makeDataFrame()
df.to_hdf(path, 'df', mode='w', format='table')
store = HDFStore(path)
store.close()
pytest.raises(ClosedFileError, store.keys)
pytest.raises(ClosedFileError, lambda: 'df' in store)
pytest.raises(ClosedFileError, lambda: len(store))
pytest.raises(ClosedFileError, lambda: store['df'])
pytest.raises(AttributeError, lambda: store.df)
pytest.raises(ClosedFileError, store.select, 'df')
pytest.raises(ClosedFileError, store.get, 'df')
pytest.raises(ClosedFileError, store.append, 'df2', df)
pytest.raises(ClosedFileError, store.put, 'df3', df)
pytest.raises(ClosedFileError, store.get_storer, 'df2')
pytest.raises(ClosedFileError, store.remove, 'df2')
def f():
store.select('df')
tm.assert_raises_regex(ClosedFileError, 'file is not open', f)
def test_pytables_native_read(self, datapath):
with ensure_clean_store(
datapath('io', 'data', 'legacy_hdf/pytables_native.h5'),
mode='r') as store:
d2 = store['detector/readout']
assert isinstance(d2, DataFrame)
@pytest.mark.skipif(PY35 and is_platform_windows(),
reason="native2 read fails oddly on windows / 3.5")
def test_pytables_native2_read(self, datapath):
with ensure_clean_store(
datapath('io', 'data', 'legacy_hdf', 'pytables_native2.h5'),
mode='r') as store:
str(store)
d1 = store['detector']
assert isinstance(d1, DataFrame)
def test_legacy_table_read(self, datapath):
# legacy table types
with ensure_clean_store(
datapath('io', 'data', 'legacy_hdf', 'legacy_table.h5'),
mode='r') as store:
with catch_warnings(record=True):
store.select('df1')
store.select('df2')
store.select('wp1')
# force the frame
store.select('df2', typ='legacy_frame')
# old version warning
pytest.raises(
Exception, store.select, 'wp1', 'minor_axis=B')
df2 = store.select('df2')
result = store.select('df2', 'index>df2.index[2]')
expected = df2[df2.index > df2.index[2]]
assert_frame_equal(expected, result)
def test_copy(self):
with catch_warnings(record=True):
def do_copy(f, new_f=None, keys=None,
propindexes=True, **kwargs):
try:
store = HDFStore(f, 'r')
if new_f is None:
import tempfile
fd, new_f = tempfile.mkstemp()
tstore = store.copy(
new_f, keys=keys, propindexes=propindexes, **kwargs)
# check keys
if keys is None:
keys = store.keys()
assert set(keys) == set(tstore.keys())
# check indicies & nrows
for k in tstore.keys():
if tstore.get_storer(k).is_table:
new_t = tstore.get_storer(k)
orig_t = store.get_storer(k)
assert orig_t.nrows == new_t.nrows
# check propindixes
if propindexes:
for a in orig_t.axes:
if a.is_indexed:
assert new_t[a.name].is_indexed
finally:
safe_close(store)
safe_close(tstore)
try:
os.close(fd)
except:
pass
safe_remove(new_f)
# new table
df = tm.makeDataFrame()
try:
path = create_tempfile(self.path)
st = HDFStore(path)
st.append('df', df, data_columns=['A'])
st.close()
do_copy(f=path)
do_copy(f=path, propindexes=False)
finally:
safe_remove(path)
def test_store_datetime_fractional_secs(self):
with ensure_clean_store(self.path) as store:
dt = datetime.datetime(2012, 1, 2, 3, 4, 5, 123456)
series = Series([0], [dt])
store['a'] = series
assert store['a'].index[0] == dt
def test_tseries_indices_series(self):
with ensure_clean_store(self.path) as store:
idx = tm.makeDateIndex(10)
ser = Series(np.random.randn(len(idx)), idx)
store['a'] = ser
result = store['a']
tm.assert_series_equal(result, ser)
assert result.index.freq == ser.index.freq
tm.assert_class_equal(result.index, ser.index, obj="series index")
idx = tm.makePeriodIndex(10)
ser = Series(np.random.randn(len(idx)), idx)
store['a'] = ser
result = store['a']
tm.assert_series_equal(result, ser)
assert result.index.freq == ser.index.freq
tm.assert_class_equal(result.index, ser.index, obj="series index")
def test_tseries_indices_frame(self):
with ensure_clean_store(self.path) as store:
idx = tm.makeDateIndex(10)
df = DataFrame(np.random.randn(len(idx), 3), index=idx)
store['a'] = df
result = store['a']
assert_frame_equal(result, df)
assert result.index.freq == df.index.freq
tm.assert_class_equal(result.index, df.index,
obj="dataframe index")
idx = tm.makePeriodIndex(10)
df = DataFrame(np.random.randn(len(idx), 3), idx)
store['a'] = df
result = store['a']
assert_frame_equal(result, df)
assert result.index.freq == df.index.freq
tm.assert_class_equal(result.index, df.index,
obj="dataframe index")
def test_unicode_index(self):
unicode_values = [u('\u03c3'), u('\u03c3\u03c3')]
# PerformanceWarning
with catch_warnings(record=True):
s = Series(np.random.randn(len(unicode_values)), unicode_values)
self._check_roundtrip(s, tm.assert_series_equal)
def test_unicode_longer_encoded(self):
# GH 11234
char = '\u0394'
df = pd.DataFrame({'A': [char]})
with ensure_clean_store(self.path) as store:
store.put('df', df, format='table', encoding='utf-8')
result = store.get('df')
tm.assert_frame_equal(result, df)
df = pd.DataFrame({'A': ['a', char], 'B': ['b', 'b']})
with ensure_clean_store(self.path) as store:
store.put('df', df, format='table', encoding='utf-8')
result = store.get('df')
tm.assert_frame_equal(result, df)
def test_store_datetime_mixed(self):
df = DataFrame(
{'a': [1, 2, 3], 'b': [1., 2., 3.], 'c': ['a', 'b', 'c']})
ts = tm.makeTimeSeries()
df['d'] = ts.index[:3]
self._check_roundtrip(df, tm.assert_frame_equal)
# def test_cant_write_multiindex_table(self):
# # for now, #1848
# df = DataFrame(np.random.randn(10, 4),
# index=[np.arange(5).repeat(2),
# np.tile(np.arange(2), 5)])
# pytest.raises(Exception, store.put, 'foo', df, format='table')
def test_append_with_diff_col_name_types_raises_value_error(self):
df = DataFrame(np.random.randn(10, 1))
df2 = DataFrame({'a': np.random.randn(10)})
df3 = DataFrame({(1, 2): np.random.randn(10)})
df4 = DataFrame({('1', 2): np.random.randn(10)})
df5 = DataFrame({('1', 2, object): np.random.randn(10)})
with ensure_clean_store(self.path) as store:
name = 'df_%s' % tm.rands(10)
store.append(name, df)
for d in (df2, df3, df4, df5):
with pytest.raises(ValueError):
store.append(name, d)
def test_query_with_nested_special_character(self):
df = DataFrame({'a': ['a', 'a', 'c', 'b',
'test & test', 'c', 'b', 'e'],
'b': [1, 2, 3, 4, 5, 6, 7, 8]})
expected = df[df.a == 'test & test']
with ensure_clean_store(self.path) as store:
store.append('test', df, format='table', data_columns=True)
result = store.select('test', 'a = "test & test"')
tm.assert_frame_equal(expected, result)
def test_categorical(self):
with ensure_clean_store(self.path) as store:
# Basic
_maybe_remove(store, 's')
s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'c'], categories=[
'a', 'b', 'c', 'd'], ordered=False))
store.append('s', s, format='table')
result = store.select('s')
tm.assert_series_equal(s, result)
_maybe_remove(store, 's_ordered')
s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'c'], categories=[
'a', 'b', 'c', 'd'], ordered=True))
store.append('s_ordered', s, format='table')
result = store.select('s_ordered')
tm.assert_series_equal(s, result)
_maybe_remove(store, 'df')
df = DataFrame({"s": s, "vals": [1, 2, 3, 4, 5, 6]})
store.append('df', df, format='table')
result = store.select('df')
tm.assert_frame_equal(result, df)
# Dtypes
s = Series([1, 1, 2, 2, 3, 4, 5]).astype('category')
store.append('si', s)
result = store.select('si')
tm.assert_series_equal(result, s)
s = Series([1, 1, np.nan, 2, 3, 4, 5]).astype('category')
store.append('si2', s)
result = store.select('si2')
tm.assert_series_equal(result, s)
# Multiple
df2 = df.copy()
df2['s2'] = Series(list('abcdefg')).astype('category')
store.append('df2', df2)
result = store.select('df2')
tm.assert_frame_equal(result, df2)
# Make sure the metadata is OK
info = store.info()
assert '/df2 ' in info
# assert '/df2/meta/values_block_0/meta' in info
assert '/df2/meta/values_block_1/meta' in info
# unordered
s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'c'], categories=[
'a', 'b', 'c', 'd'], ordered=False))
store.append('s2', s, format='table')
result = store.select('s2')
tm.assert_series_equal(result, s)
# Query
store.append('df3', df, data_columns=['s'])
expected = df[df.s.isin(['b', 'c'])]
result = store.select('df3', where=['s in ["b","c"]'])
tm.assert_frame_equal(result, expected)
expected = df[df.s.isin(['b', 'c'])]
result = store.select('df3', where=['s = ["b","c"]'])
tm.assert_frame_equal(result, expected)
expected = df[df.s.isin(['d'])]
result = store.select('df3', where=['s in ["d"]'])
tm.assert_frame_equal(result, expected)
expected = df[df.s.isin(['f'])]
result = store.select('df3', where=['s in ["f"]'])
tm.assert_frame_equal(result, expected)
# Appending with same categories is ok
store.append('df3', df)
df = concat([df, df])
expected = df[df.s.isin(['b', 'c'])]
result = store.select('df3', where=['s in ["b","c"]'])
tm.assert_frame_equal(result, expected)
# Appending must have the same categories
df3 = df.copy()
df3['s'].cat.remove_unused_categories(inplace=True)
with pytest.raises(ValueError):
store.append('df3', df3)
# Remove, and make sure meta data is removed (its a recursive
# removal so should be).
result = store.select('df3/meta/s/meta')
assert result is not None
store.remove('df3')
with pytest.raises(KeyError):
store.select('df3/meta/s/meta')
def test_categorical_conversion(self):
# GH13322
# Check that read_hdf with categorical columns doesn't return rows if
# where criteria isn't met.
obsids = ['ESP_012345_6789', 'ESP_987654_3210']
imgids = ['APF00006np', 'APF0001imm']
data = [4.3, 9.8]
# Test without categories
df = DataFrame(dict(obsids=obsids, imgids=imgids, data=data))
# We are expecting an empty DataFrame matching types of df
expected = df.iloc[[], :]
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', format='table', data_columns=True)
result = read_hdf(path, 'df', where='obsids=B')
tm.assert_frame_equal(result, expected)
# Test with categories
df.obsids = df.obsids.astype('category')
df.imgids = df.imgids.astype('category')
# We are expecting an empty DataFrame matching types of df
expected = df.iloc[[], :]
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', format='table', data_columns=True)
result = read_hdf(path, 'df', where='obsids=B')
tm.assert_frame_equal(result, expected)
def test_categorical_nan_only_columns(self):
# GH18413
# Check that read_hdf with categorical columns with NaN-only values can
# be read back.
df = pd.DataFrame({
'a': ['a', 'b', 'c', np.nan],
'b': [np.nan, np.nan, np.nan, np.nan],
'c': [1, 2, 3, 4],
'd': pd.Series([None] * 4, dtype=object)
})
df['a'] = df.a.astype('category')
df['b'] = df.b.astype('category')
df['d'] = df.b.astype('category')
expected = df
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', format='table', data_columns=True)
result = read_hdf(path, 'df')
tm.assert_frame_equal(result, expected)
def test_duplicate_column_name(self):
df = DataFrame(columns=["a", "a"], data=[[0, 0]])
with ensure_clean_path(self.path) as path:
pytest.raises(ValueError, df.to_hdf,
path, 'df', format='fixed')
df.to_hdf(path, 'df', format='table')
other = read_hdf(path, 'df')
tm.assert_frame_equal(df, other)
assert df.equals(other)
assert other.equals(df)
def test_round_trip_equals(self):
# GH 9330
df = DataFrame({"B": [1, 2], "A": ["x", "y"]})
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', format='table')
other = read_hdf(path, 'df')
tm.assert_frame_equal(df, other)
assert df.equals(other)
assert other.equals(df)
def test_preserve_timedeltaindex_type(self):
# GH9635
# Storing TimedeltaIndexed DataFrames in fixed stores did not preserve
# the type of the index.
df = DataFrame(np.random.normal(size=(10, 5)))
df.index = timedelta_range(
start='0s', periods=10, freq='1s', name='example')
with ensure_clean_store(self.path) as store:
store['df'] = df
assert_frame_equal(store['df'], df)
def test_columns_multiindex_modified(self):
# BUG: 7212
# read_hdf store.select modified the passed columns parameters
# when multi-indexed.
df = DataFrame(np.random.rand(4, 5),
index=list('abcd'),
columns=list('ABCDE'))
df.index.name = 'letters'
df = df.set_index(keys='E', append=True)
data_columns = df.index.names + df.columns.tolist()
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df',
mode='a',
append=True,
data_columns=data_columns,
index=False)
cols2load = list('BCD')
cols2load_original = list(cols2load)
df_loaded = read_hdf(path, 'df', columns=cols2load) # noqa
assert cols2load_original == cols2load
def test_to_hdf_with_object_column_names(self):
# GH9057
# Writing HDF5 table format should only work for string-like
# column types
types_should_fail = [tm.makeIntIndex, tm.makeFloatIndex,
tm.makeDateIndex, tm.makeTimedeltaIndex,
tm.makePeriodIndex]
types_should_run = [tm.makeStringIndex, tm.makeCategoricalIndex]
if compat.PY3:
types_should_run.append(tm.makeUnicodeIndex)
else:
# TODO: Add back to types_should_fail
# https://github.com/pandas-dev/pandas/issues/20907
pass
for index in types_should_fail:
df = DataFrame(np.random.randn(10, 2), columns=index(2))
with ensure_clean_path(self.path) as path:
with catch_warnings(record=True):
with tm.assert_raises_regex(
ValueError, ("cannot have non-object label "
"DataIndexableCol")):
df.to_hdf(path, 'df', format='table',
data_columns=True)
for index in types_should_run:
df = DataFrame(np.random.randn(10, 2), columns=index(2))
with ensure_clean_path(self.path) as path:
with catch_warnings(record=True):
df.to_hdf(path, 'df', format='table', data_columns=True)
result = pd.read_hdf(
path, 'df', where="index = [{0}]".format(df.index[0]))
assert(len(result))
def test_read_hdf_open_store(self):
# GH10330
# No check for non-string path_or-buf, and no test of open store
df = DataFrame(np.random.rand(4, 5),
index=list('abcd'),
columns=list('ABCDE'))
df.index.name = 'letters'
df = df.set_index(keys='E', append=True)
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', mode='w')
direct = read_hdf(path, 'df')
store = HDFStore(path, mode='r')
indirect = read_hdf(store, 'df')
tm.assert_frame_equal(direct, indirect)
assert store.is_open
store.close()
def test_read_hdf_iterator(self):
df = DataFrame(np.random.rand(4, 5),
index=list('abcd'),
columns=list('ABCDE'))
df.index.name = 'letters'
df = df.set_index(keys='E', append=True)
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', mode='w', format='t')
direct = read_hdf(path, 'df')
iterator = read_hdf(path, 'df', iterator=True)
assert isinstance(iterator, TableIterator)
indirect = next(iterator.__iter__())
tm.assert_frame_equal(direct, indirect)
iterator.store.close()
def test_read_hdf_errors(self):
df = DataFrame(np.random.rand(4, 5),
index=list('abcd'),
columns=list('ABCDE'))
with ensure_clean_path(self.path) as path:
pytest.raises(IOError, read_hdf, path, 'key')
df.to_hdf(path, 'df')
store = HDFStore(path, mode='r')
store.close()
pytest.raises(IOError, read_hdf, store, 'df')
def test_read_hdf_generic_buffer_errors(self):
pytest.raises(NotImplementedError, read_hdf, BytesIO(b''), 'df')
def test_invalid_complib(self):
df = DataFrame(np.random.rand(4, 5),
index=list('abcd'),
columns=list('ABCDE'))
with ensure_clean_path(self.path) as path:
with pytest.raises(ValueError):
df.to_hdf(path, 'df', complib='foolib')
# GH10443
def test_read_nokey(self):
df = DataFrame(np.random.rand(4, 5),
index=list('abcd'),
columns=list('ABCDE'))
# Categorical dtype not supported for "fixed" format. So no need
# to test with that dtype in the dataframe here.
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', mode='a')
reread = read_hdf(path)
assert_frame_equal(df, reread)
df.to_hdf(path, 'df2', mode='a')
pytest.raises(ValueError, read_hdf, path)
def test_read_nokey_table(self):
# GH13231
df = DataFrame({'i': range(5),
'c': Series(list('abacd'), dtype='category')})
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', mode='a', format='table')
reread = read_hdf(path)
assert_frame_equal(df, reread)
df.to_hdf(path, 'df2', mode='a', format='table')
pytest.raises(ValueError, read_hdf, path)
def test_read_nokey_empty(self):
with ensure_clean_path(self.path) as path:
store = HDFStore(path)
store.close()
pytest.raises(ValueError, read_hdf, path)
@td.skip_if_no('pathlib')
def test_read_from_pathlib_path(self):
# GH11773
from pathlib import Path
expected = DataFrame(np.random.rand(4, 5),
index=list('abcd'),
columns=list('ABCDE'))
with ensure_clean_path(self.path) as filename:
path_obj = Path(filename)
expected.to_hdf(path_obj, 'df', mode='a')
actual = read_hdf(path_obj, 'df')
tm.assert_frame_equal(expected, actual)
@td.skip_if_no('py.path')
def test_read_from_py_localpath(self):
# GH11773
from py.path import local as LocalPath
expected = DataFrame(np.random.rand(4, 5),
index=list('abcd'),
columns=list('ABCDE'))
with ensure_clean_path(self.path) as filename:
path_obj = LocalPath(filename)
expected.to_hdf(path_obj, 'df', mode='a')
actual = read_hdf(path_obj, 'df')
tm.assert_frame_equal(expected, actual)
def test_query_long_float_literal(self):
# GH 14241
df = pd.DataFrame({'A': [1000000000.0009,
1000000000.0011,
1000000000.0015]})
with ensure_clean_store(self.path) as store:
store.append('test', df, format='table', data_columns=True)
cutoff = 1000000000.0006
result = store.select('test', "A < %.4f" % cutoff)
assert result.empty
cutoff = 1000000000.0010
result = store.select('test', "A > %.4f" % cutoff)
expected = df.loc[[1, 2], :]
tm.assert_frame_equal(expected, result)
exact = 1000000000.0011
result = store.select('test', 'A == %.4f' % exact)
expected = df.loc[[1], :]
tm.assert_frame_equal(expected, result)
def test_query_compare_column_type(self):
# GH 15492
df = pd.DataFrame({'date': ['2014-01-01', '2014-01-02'],
'real_date': date_range('2014-01-01', periods=2),
'float': [1.1, 1.2],
'int': [1, 2]},
columns=['date', 'real_date', 'float', 'int'])
with ensure_clean_store(self.path) as store:
store.append('test', df, format='table', data_columns=True)
ts = pd.Timestamp('2014-01-01') # noqa
result = store.select('test', where='real_date > ts')
expected = df.loc[[1], :]
tm.assert_frame_equal(expected, result)
for op in ['<', '>', '==']:
# non strings to string column always fail
for v in [2.1, True, pd.Timestamp('2014-01-01'),
pd.Timedelta(1, 's')]:
query = 'date {op} v'.format(op=op)
with pytest.raises(TypeError):
result = store.select('test', where=query)
# strings to other columns must be convertible to type
v = 'a'
for col in ['int', 'float', 'real_date']:
query = '{col} {op} v'.format(op=op, col=col)
with pytest.raises(ValueError):
result = store.select('test', where=query)
for v, col in zip(['1', '1.1', '2014-01-01'],
['int', 'float', 'real_date']):
query = '{col} {op} v'.format(op=op, col=col)
result = store.select('test', where=query)
if op == '==':
expected = df.loc[[0], :]
elif op == '>':
expected = df.loc[[1], :]
else:
expected = df.loc[[], :]
tm.assert_frame_equal(expected, result)
@pytest.mark.parametrize('format', ['fixed', 'table'])
def test_read_hdf_series_mode_r(self, format):
# GH 16583
# Tests that reading a Series saved to an HDF file
# still works if a mode='r' argument is supplied
series = tm.makeFloatSeries()
with ensure_clean_path(self.path) as path:
series.to_hdf(path, key='data', format=format)
result = pd.read_hdf(path, key='data', mode='r')
tm.assert_series_equal(result, series)
@pytest.mark.skipif(not PY36, reason="Need python 3.6")
def test_fspath(self):
with tm.ensure_clean('foo.h5') as path:
with pd.HDFStore(path) as store:
assert os.fspath(store) == str(path)
def test_read_py2_hdf_file_in_py3(self, datapath):
# GH 16781
# tests reading a PeriodIndex DataFrame written in Python2 in Python3
# the file was generated in Python 2.7 like so:
#
# df = pd.DataFrame([1.,2,3], index=pd.PeriodIndex(
# ['2015-01-01', '2015-01-02', '2015-01-05'], freq='B'))
# df.to_hdf('periodindex_0.20.1_x86_64_darwin_2.7.13.h5', 'p')
expected = pd.DataFrame([1., 2, 3], index=pd.PeriodIndex(
['2015-01-01', '2015-01-02', '2015-01-05'], freq='B'))
with ensure_clean_store(
datapath('io', 'data', 'legacy_hdf',
'periodindex_0.20.1_x86_64_darwin_2.7.13.h5'),
mode='r') as store:
result = store['p']
assert_frame_equal(result, expected)
class TestHDFComplexValues(Base):
# GH10447
def test_complex_fixed(self):
df = DataFrame(np.random.rand(4, 5).astype(np.complex64),
index=list('abcd'),
columns=list('ABCDE'))
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df')
reread = read_hdf(path, 'df')
assert_frame_equal(df, reread)
df = DataFrame(np.random.rand(4, 5).astype(np.complex128),
index=list('abcd'),
columns=list('ABCDE'))
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df')
reread = read_hdf(path, 'df')
assert_frame_equal(df, reread)
def test_complex_table(self):
df = DataFrame(np.random.rand(4, 5).astype(np.complex64),
index=list('abcd'),
columns=list('ABCDE'))
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', format='table')
reread = read_hdf(path, 'df')
assert_frame_equal(df, reread)
df = DataFrame(np.random.rand(4, 5).astype(np.complex128),
index=list('abcd'),
columns=list('ABCDE'))
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', format='table', mode='w')
reread = read_hdf(path, 'df')
assert_frame_equal(df, reread)
def test_complex_mixed_fixed(self):
complex64 = np.array([1.0 + 1.0j, 1.0 + 1.0j,
1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64)
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j],
dtype=np.complex128)
df = DataFrame({'A': [1, 2, 3, 4],
'B': ['a', 'b', 'c', 'd'],
'C': complex64,
'D': complex128,
'E': [1.0, 2.0, 3.0, 4.0]},
index=list('abcd'))
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df')
reread = read_hdf(path, 'df')
assert_frame_equal(df, reread)
def test_complex_mixed_table(self):
complex64 = np.array([1.0 + 1.0j, 1.0 + 1.0j,
1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64)
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j],
dtype=np.complex128)
df = DataFrame({'A': [1, 2, 3, 4],
'B': ['a', 'b', 'c', 'd'],
'C': complex64,
'D': complex128,
'E': [1.0, 2.0, 3.0, 4.0]},
index=list('abcd'))
with ensure_clean_store(self.path) as store:
store.append('df', df, data_columns=['A', 'B'])
result = store.select('df', where='A>2')
assert_frame_equal(df.loc[df.A > 2], result)
with ensure_clean_path(self.path) as path:
df.to_hdf(path, 'df', format='table')
reread = read_hdf(path, 'df')
assert_frame_equal(df, reread)
def test_complex_across_dimensions_fixed(self):
with catch_warnings(record=True):
complex128 = np.array(
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
s = Series(complex128, index=list('abcd'))
df = DataFrame({'A': s, 'B': s})
p = Panel({'One': df, 'Two': df})
objs = [s, df, p]
comps = [tm.assert_series_equal, tm.assert_frame_equal,
tm.assert_panel_equal]
for obj, comp in zip(objs, comps):
with ensure_clean_path(self.path) as path:
obj.to_hdf(path, 'obj', format='fixed')
reread = read_hdf(path, 'obj')
comp(obj, reread)
def test_complex_across_dimensions(self):
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
s = Series(complex128, index=list('abcd'))
df = DataFrame({'A': s, 'B': s})
with catch_warnings(record=True):
p = Panel({'One': df, 'Two': df})
objs = [df, p]
comps = [tm.assert_frame_equal, tm.assert_panel_equal]
for obj, comp in zip(objs, comps):
with ensure_clean_path(self.path) as path:
obj.to_hdf(path, 'obj', format='table')
reread = read_hdf(path, 'obj')
comp(obj, reread)
def test_complex_indexing_error(self):
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j],
dtype=np.complex128)
df = DataFrame({'A': [1, 2, 3, 4],
'B': ['a', 'b', 'c', 'd'],
'C': complex128},
index=list('abcd'))
with ensure_clean_store(self.path) as store:
pytest.raises(TypeError, store.append,
'df', df, data_columns=['C'])
def test_complex_series_error(self):
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
s = Series(complex128, index=list('abcd'))
with ensure_clean_path(self.path) as path:
pytest.raises(TypeError, s.to_hdf, path, 'obj', format='t')
with ensure_clean_path(self.path) as path:
s.to_hdf(path, 'obj', format='t', index=False)
reread = read_hdf(path, 'obj')
tm.assert_series_equal(s, reread)
def test_complex_append(self):
df = DataFrame({'a': np.random.randn(100).astype(np.complex128),
'b': np.random.randn(100)})
with ensure_clean_store(self.path) as store:
store.append('df', df, data_columns=['b'])
store.append('df', df)
result = store.select('df')
assert_frame_equal(pd.concat([df, df], 0), result)
class TestTimezones(Base):
def _compare_with_tz(self, a, b):
tm.assert_frame_equal(a, b)
# compare the zones on each element
for c in a.columns:
for i in a.index:
a_e = a.loc[i, c]
b_e = b.loc[i, c]
if not (a_e == b_e and a_e.tz == b_e.tz):
raise AssertionError(
"invalid tz comparison [%s] [%s]" % (a_e, b_e))
def test_append_with_timezones_dateutil(self):
from datetime import timedelta
# use maybe_get_tz instead of dateutil.tz.gettz to handle the windows
# filename issues.
from pandas._libs.tslibs.timezones import maybe_get_tz
gettz = lambda x: maybe_get_tz('dateutil/' + x)
# as columns
with ensure_clean_store(self.path) as store:
_maybe_remove(store, 'df_tz')
df = DataFrame(dict(A=[Timestamp('20130102 2:00:00', tz=gettz(
'US/Eastern')) + timedelta(hours=1) * i for i in range(5)]))
store.append('df_tz', df, data_columns=['A'])
result = store['df_tz']
self._compare_with_tz(result, df)
assert_frame_equal(result, df)
# select with tz aware
expected = df[df.A >= df.A[3]]
result = store.select('df_tz', where='A>=df.A[3]')
self._compare_with_tz(result, expected)
# ensure we include dates in DST and STD time here.
_maybe_remove(store, 'df_tz')
df = DataFrame(dict(A=Timestamp('20130102',
tz=gettz('US/Eastern')),
B=Timestamp('20130603',
tz=gettz('US/Eastern'))),
index=range(5))
store.append('df_tz', df)
result = store['df_tz']
self._compare_with_tz(result, df)
assert_frame_equal(result, df)
df = DataFrame(dict(A=Timestamp('20130102',
tz=gettz('US/Eastern')),
B=Timestamp('20130102', tz=gettz('EET'))),
index=range(5))
pytest.raises(ValueError, store.append, 'df_tz', df)
# this is ok
_maybe_remove(store, 'df_tz')
store.append('df_tz', df, data_columns=['A', 'B'])
result = store['df_tz']
self._compare_with_tz(result, df)
assert_frame_equal(result, df)
# can't append with diff timezone
df = DataFrame(dict(A=Timestamp('20130102',
tz=gettz('US/Eastern')),
B=Timestamp('20130102', tz=gettz('CET'))),
index=range(5))
pytest.raises(ValueError, store.append, 'df_tz', df)
# as index
with ensure_clean_store(self.path) as store:
# GH 4098 example
df = DataFrame(dict(A=Series(lrange(3), index=date_range(
'2000-1-1', periods=3, freq='H', tz=gettz('US/Eastern')))))
_maybe_remove(store, 'df')
store.put('df', df)
result = store.select('df')
assert_frame_equal(result, df)
_maybe_remove(store, 'df')
store.append('df', df)
result = store.select('df')
assert_frame_equal(result, df)
def test_append_with_timezones_pytz(self):
from datetime import timedelta
# as columns
with ensure_clean_store(self.path) as store:
_maybe_remove(store, 'df_tz')
df = DataFrame(dict(A=[Timestamp('20130102 2:00:00',
tz='US/Eastern') +
timedelta(hours=1) * i
for i in range(5)]))
store.append('df_tz', df, data_columns=['A'])
result = store['df_tz']
self._compare_with_tz(result, df)
assert_frame_equal(result, df)
# select with tz aware
self._compare_with_tz(store.select(
'df_tz', where='A>=df.A[3]'), df[df.A >= df.A[3]])
_maybe_remove(store, 'df_tz')
# ensure we include dates in DST and STD time here.
df = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'),
B=Timestamp('20130603', tz='US/Eastern')),
index=range(5))
store.append('df_tz', df)
result = store['df_tz']
self._compare_with_tz(result, df)
assert_frame_equal(result, df)
df = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'),
B=Timestamp('20130102', tz='EET')),
index=range(5))
pytest.raises(ValueError, store.append, 'df_tz', df)
# this is ok
_maybe_remove(store, 'df_tz')
store.append('df_tz', df, data_columns=['A', 'B'])
result = store['df_tz']
self._compare_with_tz(result, df)
assert_frame_equal(result, df)
# can't append with diff timezone
df = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'),
B=Timestamp('20130102', tz='CET')),
index=range(5))
pytest.raises(ValueError, store.append, 'df_tz', df)
# as index
with ensure_clean_store(self.path) as store:
# GH 4098 example
df = DataFrame(dict(A=Series(lrange(3), index=date_range(
'2000-1-1', periods=3, freq='H', tz='US/Eastern'))))
_maybe_remove(store, 'df')
store.put('df', df)
result = store.select('df')
assert_frame_equal(result, df)
_maybe_remove(store, 'df')
store.append('df', df)
result = store.select('df')
assert_frame_equal(result, df)
def test_tseries_select_index_column(self):
# GH7777
# selecting a UTC datetimeindex column did
# not preserve UTC tzinfo set before storing
# check that no tz still works
rng = date_range('1/1/2000', '1/30/2000')
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
with ensure_clean_store(self.path) as store:
store.append('frame', frame)
result = store.select_column('frame', 'index')
assert rng.tz == DatetimeIndex(result.values).tz
# check utc
rng = date_range('1/1/2000', '1/30/2000', tz='UTC')
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
with ensure_clean_store(self.path) as store:
store.append('frame', frame)
result = store.select_column('frame', 'index')
assert rng.tz == result.dt.tz
# double check non-utc
rng = date_range('1/1/2000', '1/30/2000', tz='US/Eastern')
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
with ensure_clean_store(self.path) as store:
store.append('frame', frame)
result = store.select_column('frame', 'index')
assert rng.tz == result.dt.tz
def test_timezones_fixed(self):
with ensure_clean_store(self.path) as store:
# index
rng = date_range('1/1/2000', '1/30/2000', tz='US/Eastern')
df = DataFrame(np.random.randn(len(rng), 4), index=rng)
store['df'] = df
result = store['df']
assert_frame_equal(result, df)
# as data
# GH11411
_maybe_remove(store, 'df')
df = DataFrame({'A': rng,
'B': rng.tz_convert('UTC').tz_localize(None),
'C': rng.tz_convert('CET'),
'D': range(len(rng))}, index=rng)
store['df'] = df
result = store['df']
assert_frame_equal(result, df)
def test_fixed_offset_tz(self):
rng = date_range('1/1/2000 00:00:00-07:00', '1/30/2000 00:00:00-07:00')
frame = DataFrame(np.random.randn(len(rng), 4), index=rng)
with ensure_clean_store(self.path) as store:
store['frame'] = frame
recons = store['frame']
tm.assert_index_equal(recons.index, rng)
assert rng.tz == recons.index.tz
@td.skip_if_windows
def test_store_timezone(self):
# GH2852
# issue storing datetime.date with a timezone as it resets when read
# back in a new timezone
# original method
with ensure_clean_store(self.path) as store:
today = datetime.date(2013, 9, 10)
df = DataFrame([1, 2, 3], index=[today, today, today])
store['obj1'] = df
result = store['obj1']
assert_frame_equal(result, df)
# with tz setting
with ensure_clean_store(self.path) as store:
with set_timezone('EST5EDT'):
today = datetime.date(2013, 9, 10)
df = DataFrame([1, 2, 3], index=[today, today, today])
store['obj1'] = df
with set_timezone('CST6CDT'):
result = store['obj1']
assert_frame_equal(result, df)
def test_legacy_datetimetz_object(self, datapath):
# legacy from < 0.17.0
# 8260
expected = DataFrame(dict(A=Timestamp('20130102', tz='US/Eastern'),
B=Timestamp('20130603', tz='CET')),
index=range(5))
with ensure_clean_store(
datapath('io', 'data', 'legacy_hdf', 'datetimetz_object.h5'),
mode='r') as store:
result = store['df']
assert_frame_equal(result, expected)
def test_dst_transitions(self):
# make sure we are not failing on transaitions
with ensure_clean_store(self.path) as store:
times = pd.date_range("2013-10-26 23:00", "2013-10-27 01:00",
tz="Europe/London",
freq="H",
ambiguous='infer')
for i in [times, times + pd.Timedelta('10min')]:
_maybe_remove(store, 'df')
df = DataFrame({'A': range(len(i)), 'B': i}, index=i)
store.append('df', df)
result = store.select('df')
assert_frame_equal(result, df)