laywerrobot/lib/python3.6/site-packages/pandas/tests/indexing/test_categorical.py
2020-08-27 21:55:39 +02:00

717 lines
26 KiB
Python

# -*- coding: utf-8 -*-
import pytest
import pandas as pd
import pandas.compat as compat
import numpy as np
from pandas import (Series, DataFrame, Timestamp, Categorical,
CategoricalIndex, Interval, Index)
from pandas.util.testing import assert_series_equal, assert_frame_equal
from pandas.util import testing as tm
from pandas.core.dtypes.common import is_categorical_dtype
from pandas.api.types import CategoricalDtype as CDT
from pandas.core.dtypes.dtypes import CategoricalDtype
class TestCategoricalIndex(object):
def setup_method(self, method):
self.df = DataFrame({'A': np.arange(6, dtype='int64'),
'B': Series(list('aabbca')).astype(
CDT(list('cab')))}).set_index('B')
self.df2 = DataFrame({'A': np.arange(6, dtype='int64'),
'B': Series(list('aabbca')).astype(
CDT(list('cabe')))}).set_index('B')
self.df3 = DataFrame({'A': np.arange(6, dtype='int64'),
'B': (Series([1, 1, 2, 1, 3, 2])
.astype(CDT([3, 2, 1], ordered=True)))
}).set_index('B')
self.df4 = DataFrame({'A': np.arange(6, dtype='int64'),
'B': (Series([1, 1, 2, 1, 3, 2])
.astype(CDT([3, 2, 1], ordered=False)))
}).set_index('B')
def test_loc_scalar(self):
result = self.df.loc['a']
expected = (DataFrame({'A': [0, 1, 5],
'B': (Series(list('aaa'))
.astype(CDT(list('cab'))))})
.set_index('B'))
assert_frame_equal(result, expected)
df = self.df.copy()
df.loc['a'] = 20
expected = (DataFrame({'A': [20, 20, 2, 3, 4, 20],
'B': (Series(list('aabbca'))
.astype(CDT(list('cab'))))})
.set_index('B'))
assert_frame_equal(df, expected)
# value not in the categories
pytest.raises(KeyError, lambda: df.loc['d'])
def f():
df.loc['d'] = 10
pytest.raises(TypeError, f)
def f():
df.loc['d', 'A'] = 10
pytest.raises(TypeError, f)
def f():
df.loc['d', 'C'] = 10
pytest.raises(TypeError, f)
def test_getitem_scalar(self):
cats = Categorical([Timestamp('12-31-1999'),
Timestamp('12-31-2000')])
s = Series([1, 2], index=cats)
expected = s.iloc[0]
result = s[cats[0]]
assert result == expected
def test_slicing_directly(self):
cat = Categorical(["a", "b", "c", "d", "a", "b", "c"])
sliced = cat[3]
assert sliced == "d"
sliced = cat[3:5]
expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd'])
tm.assert_numpy_array_equal(sliced._codes, expected._codes)
tm.assert_index_equal(sliced.categories, expected.categories)
def test_slicing(self):
cat = Series(Categorical([1, 2, 3, 4]))
reversed = cat[::-1]
exp = np.array([4, 3, 2, 1], dtype=np.int64)
tm.assert_numpy_array_equal(reversed.__array__(), exp)
df = DataFrame({'value': (np.arange(100) + 1).astype('int64')})
df['D'] = pd.cut(df.value, bins=[0, 25, 50, 75, 100])
expected = Series([11, Interval(0, 25)], index=['value', 'D'], name=10)
result = df.iloc[10]
tm.assert_series_equal(result, expected)
expected = DataFrame({'value': np.arange(11, 21).astype('int64')},
index=np.arange(10, 20).astype('int64'))
expected['D'] = pd.cut(expected.value, bins=[0, 25, 50, 75, 100])
result = df.iloc[10:20]
tm.assert_frame_equal(result, expected)
expected = Series([9, Interval(0, 25)], index=['value', 'D'], name=8)
result = df.loc[8]
tm.assert_series_equal(result, expected)
def test_slicing_and_getting_ops(self):
# systematically test the slicing operations:
# for all slicing ops:
# - returning a dataframe
# - returning a column
# - returning a row
# - returning a single value
cats = Categorical(
["a", "c", "b", "c", "c", "c", "c"], categories=["a", "b", "c"])
idx = Index(["h", "i", "j", "k", "l", "m", "n"])
values = [1, 2, 3, 4, 5, 6, 7]
df = DataFrame({"cats": cats, "values": values}, index=idx)
# the expected values
cats2 = Categorical(["b", "c"], categories=["a", "b", "c"])
idx2 = Index(["j", "k"])
values2 = [3, 4]
# 2:4,: | "j":"k",:
exp_df = DataFrame({"cats": cats2, "values": values2}, index=idx2)
# :,"cats" | :,0
exp_col = Series(cats, index=idx, name='cats')
# "j",: | 2,:
exp_row = Series(["b", 3], index=["cats", "values"], dtype="object",
name="j")
# "j","cats | 2,0
exp_val = "b"
# iloc
# frame
res_df = df.iloc[2:4, :]
tm.assert_frame_equal(res_df, exp_df)
assert is_categorical_dtype(res_df["cats"])
# row
res_row = df.iloc[2, :]
tm.assert_series_equal(res_row, exp_row)
assert isinstance(res_row["cats"], compat.string_types)
# col
res_col = df.iloc[:, 0]
tm.assert_series_equal(res_col, exp_col)
assert is_categorical_dtype(res_col)
# single value
res_val = df.iloc[2, 0]
assert res_val == exp_val
# loc
# frame
res_df = df.loc["j":"k", :]
tm.assert_frame_equal(res_df, exp_df)
assert is_categorical_dtype(res_df["cats"])
# row
res_row = df.loc["j", :]
tm.assert_series_equal(res_row, exp_row)
assert isinstance(res_row["cats"], compat.string_types)
# col
res_col = df.loc[:, "cats"]
tm.assert_series_equal(res_col, exp_col)
assert is_categorical_dtype(res_col)
# single value
res_val = df.loc["j", "cats"]
assert res_val == exp_val
# ix
# frame
# res_df = df.loc["j":"k",[0,1]] # doesn't work?
res_df = df.loc["j":"k", :]
tm.assert_frame_equal(res_df, exp_df)
assert is_categorical_dtype(res_df["cats"])
# row
res_row = df.loc["j", :]
tm.assert_series_equal(res_row, exp_row)
assert isinstance(res_row["cats"], compat.string_types)
# col
res_col = df.loc[:, "cats"]
tm.assert_series_equal(res_col, exp_col)
assert is_categorical_dtype(res_col)
# single value
res_val = df.loc["j", df.columns[0]]
assert res_val == exp_val
# iat
res_val = df.iat[2, 0]
assert res_val == exp_val
# at
res_val = df.at["j", "cats"]
assert res_val == exp_val
# fancy indexing
exp_fancy = df.iloc[[2]]
res_fancy = df[df["cats"] == "b"]
tm.assert_frame_equal(res_fancy, exp_fancy)
res_fancy = df[df["values"] == 3]
tm.assert_frame_equal(res_fancy, exp_fancy)
# get_value
res_val = df.at["j", "cats"]
assert res_val == exp_val
# i : int, slice, or sequence of integers
res_row = df.iloc[2]
tm.assert_series_equal(res_row, exp_row)
assert isinstance(res_row["cats"], compat.string_types)
res_df = df.iloc[slice(2, 4)]
tm.assert_frame_equal(res_df, exp_df)
assert is_categorical_dtype(res_df["cats"])
res_df = df.iloc[[2, 3]]
tm.assert_frame_equal(res_df, exp_df)
assert is_categorical_dtype(res_df["cats"])
res_col = df.iloc[:, 0]
tm.assert_series_equal(res_col, exp_col)
assert is_categorical_dtype(res_col)
res_df = df.iloc[:, slice(0, 2)]
tm.assert_frame_equal(res_df, df)
assert is_categorical_dtype(res_df["cats"])
res_df = df.iloc[:, [0, 1]]
tm.assert_frame_equal(res_df, df)
assert is_categorical_dtype(res_df["cats"])
def test_slicing_doc_examples(self):
# GH 7918
cats = Categorical(["a", "b", "b", "b", "c", "c", "c"],
categories=["a", "b", "c"])
idx = Index(["h", "i", "j", "k", "l", "m", "n", ])
values = [1, 2, 2, 2, 3, 4, 5]
df = DataFrame({"cats": cats, "values": values}, index=idx)
result = df.iloc[2:4, :]
expected = DataFrame(
{"cats": Categorical(['b', 'b'], categories=['a', 'b', 'c']),
"values": [2, 2]}, index=['j', 'k'])
tm.assert_frame_equal(result, expected)
result = df.iloc[2:4, :].dtypes
expected = Series(['category', 'int64'], ['cats', 'values'])
tm.assert_series_equal(result, expected)
result = df.loc["h":"j", "cats"]
expected = Series(Categorical(['a', 'b', 'b'],
categories=['a', 'b', 'c']),
index=['h', 'i', 'j'], name='cats')
tm.assert_series_equal(result, expected)
result = df.loc["h":"j", df.columns[0:1]]
expected = DataFrame({'cats': Categorical(['a', 'b', 'b'],
categories=['a', 'b', 'c'])},
index=['h', 'i', 'j'])
tm.assert_frame_equal(result, expected)
def test_getitem_category_type(self):
# GH 14580
# test iloc() on Series with Categorical data
s = Series([1, 2, 3]).astype('category')
# get slice
result = s.iloc[0:2]
expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3]))
tm.assert_series_equal(result, expected)
# get list of indexes
result = s.iloc[[0, 1]]
expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3]))
tm.assert_series_equal(result, expected)
# get boolean array
result = s.iloc[[True, False, False]]
expected = Series([1]).astype(CategoricalDtype([1, 2, 3]))
tm.assert_series_equal(result, expected)
def test_loc_listlike(self):
# list of labels
result = self.df.loc[['c', 'a']]
expected = self.df.iloc[[4, 0, 1, 5]]
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.loc[['a', 'b', 'e']]
exp_index = CategoricalIndex(
list('aaabbe'), categories=list('cabe'), name='B')
expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan]}, index=exp_index)
assert_frame_equal(result, expected, check_index_type=True)
# element in the categories but not in the values
pytest.raises(KeyError, lambda: self.df2.loc['e'])
# assign is ok
df = self.df2.copy()
df.loc['e'] = 20
result = df.loc[['a', 'b', 'e']]
exp_index = CategoricalIndex(
list('aaabbe'), categories=list('cabe'), name='B')
expected = DataFrame({'A': [0, 1, 5, 2, 3, 20]}, index=exp_index)
assert_frame_equal(result, expected)
df = self.df2.copy()
result = df.loc[['a', 'b', 'e']]
exp_index = CategoricalIndex(
list('aaabbe'), categories=list('cabe'), name='B')
expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan]}, index=exp_index)
assert_frame_equal(result, expected, check_index_type=True)
# not all labels in the categories
with pytest.raises(KeyError):
self.df2.loc[['a', 'd']]
def test_loc_listlike_dtypes(self):
# GH 11586
# unique categories and codes
index = CategoricalIndex(['a', 'b', 'c'])
df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=index)
# unique slice
res = df.loc[['a', 'b']]
exp_index = CategoricalIndex(['a', 'b'],
categories=index.categories)
exp = DataFrame({'A': [1, 2], 'B': [4, 5]}, index=exp_index)
tm.assert_frame_equal(res, exp, check_index_type=True)
# duplicated slice
res = df.loc[['a', 'a', 'b']]
exp_index = CategoricalIndex(['a', 'a', 'b'],
categories=index.categories)
exp = DataFrame({'A': [1, 1, 2], 'B': [4, 4, 5]}, index=exp_index)
tm.assert_frame_equal(res, exp, check_index_type=True)
with tm.assert_raises_regex(
KeyError,
'a list-indexer must only include values that are '
'in the categories'):
df.loc[['a', 'x']]
# duplicated categories and codes
index = CategoricalIndex(['a', 'b', 'a'])
df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=index)
# unique slice
res = df.loc[['a', 'b']]
exp = DataFrame({'A': [1, 3, 2],
'B': [4, 6, 5]},
index=CategoricalIndex(['a', 'a', 'b']))
tm.assert_frame_equal(res, exp, check_index_type=True)
# duplicated slice
res = df.loc[['a', 'a', 'b']]
exp = DataFrame(
{'A': [1, 3, 1, 3, 2],
'B': [4, 6, 4, 6, 5
]}, index=CategoricalIndex(['a', 'a', 'a', 'a', 'b']))
tm.assert_frame_equal(res, exp, check_index_type=True)
with tm.assert_raises_regex(
KeyError,
'a list-indexer must only include values '
'that are in the categories'):
df.loc[['a', 'x']]
# contains unused category
index = CategoricalIndex(
['a', 'b', 'a', 'c'], categories=list('abcde'))
df = DataFrame({'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8]}, index=index)
res = df.loc[['a', 'b']]
exp = DataFrame({'A': [1, 3, 2], 'B': [5, 7, 6]},
index=CategoricalIndex(['a', 'a', 'b'],
categories=list('abcde')))
tm.assert_frame_equal(res, exp, check_index_type=True)
res = df.loc[['a', 'e']]
exp = DataFrame({'A': [1, 3, np.nan], 'B': [5, 7, np.nan]},
index=CategoricalIndex(['a', 'a', 'e'],
categories=list('abcde')))
tm.assert_frame_equal(res, exp, check_index_type=True)
# duplicated slice
res = df.loc[['a', 'a', 'b']]
exp = DataFrame({'A': [1, 3, 1, 3, 2], 'B': [5, 7, 5, 7, 6]},
index=CategoricalIndex(['a', 'a', 'a', 'a', 'b'],
categories=list('abcde')))
tm.assert_frame_equal(res, exp, check_index_type=True)
with tm.assert_raises_regex(
KeyError,
'a list-indexer must only include values '
'that are in the categories'):
df.loc[['a', 'x']]
def test_get_indexer_array(self):
arr = np.array([Timestamp('1999-12-31 00:00:00'),
Timestamp('2000-12-31 00:00:00')], dtype=object)
cats = [Timestamp('1999-12-31 00:00:00'),
Timestamp('2000-12-31 00:00:00')]
ci = CategoricalIndex(cats,
categories=cats,
ordered=False, dtype='category')
result = ci.get_indexer(arr)
expected = np.array([0, 1], dtype='intp')
tm.assert_numpy_array_equal(result, expected)
def test_get_indexer_same_categories_same_order(self):
ci = CategoricalIndex(['a', 'b'], categories=['a', 'b'])
result = ci.get_indexer(CategoricalIndex(['b', 'b'],
categories=['a', 'b']))
expected = np.array([1, 1], dtype='intp')
tm.assert_numpy_array_equal(result, expected)
def test_get_indexer_same_categories_different_order(self):
# https://github.com/pandas-dev/pandas/issues/19551
ci = CategoricalIndex(['a', 'b'], categories=['a', 'b'])
result = ci.get_indexer(CategoricalIndex(['b', 'b'],
categories=['b', 'a']))
expected = np.array([1, 1], dtype='intp')
tm.assert_numpy_array_equal(result, expected)
def test_getitem_with_listlike(self):
# GH 16115
cats = Categorical([Timestamp('12-31-1999'),
Timestamp('12-31-2000')])
expected = DataFrame([[1, 0], [0, 1]], dtype='uint8',
index=[0, 1], columns=cats)
dummies = pd.get_dummies(cats)
result = dummies[[c for c in dummies.columns]]
assert_frame_equal(result, expected)
def test_setitem_listlike(self):
# GH 9469
# properly coerce the input indexers
np.random.seed(1)
c = Categorical(np.random.randint(0, 5, size=150000).astype(
np.int8)).add_categories([-1000])
indexer = np.array([100000]).astype(np.int64)
c[indexer] = -1000
# we are asserting the code result here
# which maps to the -1000 category
result = c.codes[np.array([100000]).astype(np.int64)]
tm.assert_numpy_array_equal(result, np.array([5], dtype='int8'))
def test_ix_categorical_index(self):
# GH 12531
df = DataFrame(np.random.randn(3, 3),
index=list('ABC'), columns=list('XYZ'))
cdf = df.copy()
cdf.index = CategoricalIndex(df.index)
cdf.columns = CategoricalIndex(df.columns)
expect = Series(df.loc['A', :], index=cdf.columns, name='A')
assert_series_equal(cdf.loc['A', :], expect)
expect = Series(df.loc[:, 'X'], index=cdf.index, name='X')
assert_series_equal(cdf.loc[:, 'X'], expect)
exp_index = CategoricalIndex(list('AB'), categories=['A', 'B', 'C'])
expect = DataFrame(df.loc[['A', 'B'], :], columns=cdf.columns,
index=exp_index)
assert_frame_equal(cdf.loc[['A', 'B'], :], expect)
exp_columns = CategoricalIndex(list('XY'),
categories=['X', 'Y', 'Z'])
expect = DataFrame(df.loc[:, ['X', 'Y']], index=cdf.index,
columns=exp_columns)
assert_frame_equal(cdf.loc[:, ['X', 'Y']], expect)
# non-unique
df = DataFrame(np.random.randn(3, 3),
index=list('ABA'), columns=list('XYX'))
cdf = df.copy()
cdf.index = CategoricalIndex(df.index)
cdf.columns = CategoricalIndex(df.columns)
exp_index = CategoricalIndex(list('AA'), categories=['A', 'B'])
expect = DataFrame(df.loc['A', :], columns=cdf.columns,
index=exp_index)
assert_frame_equal(cdf.loc['A', :], expect)
exp_columns = CategoricalIndex(list('XX'), categories=['X', 'Y'])
expect = DataFrame(df.loc[:, 'X'], index=cdf.index,
columns=exp_columns)
assert_frame_equal(cdf.loc[:, 'X'], expect)
expect = DataFrame(df.loc[['A', 'B'], :], columns=cdf.columns,
index=CategoricalIndex(list('AAB')))
assert_frame_equal(cdf.loc[['A', 'B'], :], expect)
expect = DataFrame(df.loc[:, ['X', 'Y']], index=cdf.index,
columns=CategoricalIndex(list('XXY')))
assert_frame_equal(cdf.loc[:, ['X', 'Y']], expect)
def test_read_only_source(self):
# GH 10043
rw_array = np.eye(10)
rw_df = DataFrame(rw_array)
ro_array = np.eye(10)
ro_array.setflags(write=False)
ro_df = DataFrame(ro_array)
assert_frame_equal(rw_df.iloc[[1, 2, 3]], ro_df.iloc[[1, 2, 3]])
assert_frame_equal(rw_df.iloc[[1]], ro_df.iloc[[1]])
assert_series_equal(rw_df.iloc[1], ro_df.iloc[1])
assert_frame_equal(rw_df.iloc[1:3], ro_df.iloc[1:3])
assert_frame_equal(rw_df.loc[[1, 2, 3]], ro_df.loc[[1, 2, 3]])
assert_frame_equal(rw_df.loc[[1]], ro_df.loc[[1]])
assert_series_equal(rw_df.loc[1], ro_df.loc[1])
assert_frame_equal(rw_df.loc[1:3], ro_df.loc[1:3])
def test_reindexing(self):
# reindexing
# convert to a regular index
result = self.df2.reindex(['a', 'b', 'e'])
expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan],
'B': Series(list('aaabbe'))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['a', 'b'])
expected = DataFrame({'A': [0, 1, 5, 2, 3],
'B': Series(list('aaabb'))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['e'])
expected = DataFrame({'A': [np.nan],
'B': Series(['e'])}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['d'])
expected = DataFrame({'A': [np.nan],
'B': Series(['d'])}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
# since we are actually reindexing with a Categorical
# then return a Categorical
cats = list('cabe')
result = self.df2.reindex(Categorical(['a', 'd'], categories=cats))
expected = DataFrame({'A': [0, 1, 5, np.nan],
'B': Series(list('aaad')).astype(
CDT(cats))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(Categorical(['a'], categories=cats))
expected = DataFrame({'A': [0, 1, 5],
'B': Series(list('aaa')).astype(
CDT(cats))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['a', 'b', 'e'])
expected = DataFrame({'A': [0, 1, 5, 2, 3, np.nan],
'B': Series(list('aaabbe'))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['a', 'b'])
expected = DataFrame({'A': [0, 1, 5, 2, 3],
'B': Series(list('aaabb'))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(['e'])
expected = DataFrame({'A': [np.nan],
'B': Series(['e'])}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
# give back the type of categorical that we received
result = self.df2.reindex(Categorical(
['a', 'd'], categories=cats, ordered=True))
expected = DataFrame(
{'A': [0, 1, 5, np.nan],
'B': Series(list('aaad')).astype(
CDT(cats, ordered=True))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
result = self.df2.reindex(Categorical(
['a', 'd'], categories=['a', 'd']))
expected = DataFrame({'A': [0, 1, 5, np.nan],
'B': Series(list('aaad')).astype(
CDT(['a', 'd']))}).set_index('B')
assert_frame_equal(result, expected, check_index_type=True)
# passed duplicate indexers are not allowed
pytest.raises(ValueError, lambda: self.df2.reindex(['a', 'a']))
# args NotImplemented ATM
pytest.raises(NotImplementedError,
lambda: self.df2.reindex(['a'], method='ffill'))
pytest.raises(NotImplementedError,
lambda: self.df2.reindex(['a'], level=1))
pytest.raises(NotImplementedError,
lambda: self.df2.reindex(['a'], limit=2))
def test_loc_slice(self):
# slicing
# not implemented ATM
# GH9748
pytest.raises(TypeError, lambda: self.df.loc[1:5])
# result = df.loc[1:5]
# expected = df.iloc[[1,2,3,4]]
# assert_frame_equal(result, expected)
def test_boolean_selection(self):
df3 = self.df3
df4 = self.df4
result = df3[df3.index == 'a']
expected = df3.iloc[[]]
assert_frame_equal(result, expected)
result = df4[df4.index == 'a']
expected = df4.iloc[[]]
assert_frame_equal(result, expected)
result = df3[df3.index == 1]
expected = df3.iloc[[0, 1, 3]]
assert_frame_equal(result, expected)
result = df4[df4.index == 1]
expected = df4.iloc[[0, 1, 3]]
assert_frame_equal(result, expected)
# since we have an ordered categorical
# CategoricalIndex([1, 1, 2, 1, 3, 2],
# categories=[3, 2, 1],
# ordered=True,
# name=u'B')
result = df3[df3.index < 2]
expected = df3.iloc[[4]]
assert_frame_equal(result, expected)
result = df3[df3.index > 1]
expected = df3.iloc[[]]
assert_frame_equal(result, expected)
# unordered
# cannot be compared
# CategoricalIndex([1, 1, 2, 1, 3, 2],
# categories=[3, 2, 1],
# ordered=False,
# name=u'B')
pytest.raises(TypeError, lambda: df4[df4.index < 2])
pytest.raises(TypeError, lambda: df4[df4.index > 1])
def test_indexing_with_category(self):
# https://github.com/pandas-dev/pandas/issues/12564
# consistent result if comparing as Dataframe
cat = DataFrame({'A': ['foo', 'bar', 'baz']})
exp = DataFrame({'A': [True, False, False]})
res = (cat[['A']] == 'foo')
tm.assert_frame_equal(res, exp)
cat['A'] = cat['A'].astype('category')
res = (cat[['A']] == 'foo')
tm.assert_frame_equal(res, exp)
def test_map_with_dict_or_series(self):
orig_values = ['a', 'B', 1, 'a']
new_values = ['one', 2, 3.0, 'one']
cur_index = pd.CategoricalIndex(orig_values, name='XXX')
expected = pd.CategoricalIndex(new_values,
name='XXX', categories=[3.0, 2, 'one'])
mapper = pd.Series(new_values[:-1], index=orig_values[:-1])
output = cur_index.map(mapper)
# Order of categories in output can be different
tm.assert_index_equal(expected, output)
mapper = {o: n for o, n in
zip(orig_values[:-1], new_values[:-1])}
output = cur_index.map(mapper)
# Order of categories in output can be different
tm.assert_index_equal(expected, output)