309 lines
10 KiB
Python
309 lines
10 KiB
Python
import warnings
|
|
|
|
import pytest
|
|
|
|
import numpy as np
|
|
from datetime import timedelta
|
|
|
|
import pandas as pd
|
|
import pandas.util.testing as tm
|
|
from pandas import (timedelta_range, date_range, Series, Timedelta,
|
|
TimedeltaIndex, Index, DataFrame,
|
|
Int64Index)
|
|
from pandas.util.testing import (assert_almost_equal, assert_series_equal,
|
|
assert_index_equal)
|
|
|
|
from ..datetimelike import DatetimeLike
|
|
|
|
randn = np.random.randn
|
|
|
|
|
|
class TestTimedeltaIndex(DatetimeLike):
|
|
_holder = TimedeltaIndex
|
|
|
|
def setup_method(self, method):
|
|
self.indices = dict(index=tm.makeTimedeltaIndex(10))
|
|
self.setup_indices()
|
|
|
|
def create_index(self):
|
|
return pd.to_timedelta(range(5), unit='d') + pd.offsets.Hour(1)
|
|
|
|
def test_numeric_compat(self):
|
|
# Dummy method to override super's version; this test is now done
|
|
# in test_arithmetic.py
|
|
pass
|
|
|
|
def test_shift(self):
|
|
pass # this is handled in test_arithmetic.py
|
|
|
|
def test_pickle_compat_construction(self):
|
|
pass
|
|
|
|
def test_fillna_timedelta(self):
|
|
# GH 11343
|
|
idx = pd.TimedeltaIndex(['1 day', pd.NaT, '3 day'])
|
|
|
|
exp = pd.TimedeltaIndex(['1 day', '2 day', '3 day'])
|
|
tm.assert_index_equal(idx.fillna(pd.Timedelta('2 day')), exp)
|
|
|
|
exp = pd.TimedeltaIndex(['1 day', '3 hour', '3 day'])
|
|
idx.fillna(pd.Timedelta('3 hour'))
|
|
|
|
exp = pd.Index(
|
|
[pd.Timedelta('1 day'), 'x', pd.Timedelta('3 day')], dtype=object)
|
|
tm.assert_index_equal(idx.fillna('x'), exp)
|
|
|
|
def test_difference_freq(self):
|
|
# GH14323: Difference of TimedeltaIndex should not preserve frequency
|
|
|
|
index = timedelta_range("0 days", "5 days", freq="D")
|
|
|
|
other = timedelta_range("1 days", "4 days", freq="D")
|
|
expected = TimedeltaIndex(["0 days", "5 days"], freq=None)
|
|
idx_diff = index.difference(other)
|
|
tm.assert_index_equal(idx_diff, expected)
|
|
tm.assert_attr_equal('freq', idx_diff, expected)
|
|
|
|
other = timedelta_range("2 days", "5 days", freq="D")
|
|
idx_diff = index.difference(other)
|
|
expected = TimedeltaIndex(["0 days", "1 days"], freq=None)
|
|
tm.assert_index_equal(idx_diff, expected)
|
|
tm.assert_attr_equal('freq', idx_diff, expected)
|
|
|
|
def test_isin(self):
|
|
|
|
index = tm.makeTimedeltaIndex(4)
|
|
result = index.isin(index)
|
|
assert result.all()
|
|
|
|
result = index.isin(list(index))
|
|
assert result.all()
|
|
|
|
assert_almost_equal(index.isin([index[2], 5]),
|
|
np.array([False, False, True, False]))
|
|
|
|
def test_factorize(self):
|
|
idx1 = TimedeltaIndex(['1 day', '1 day', '2 day', '2 day', '3 day',
|
|
'3 day'])
|
|
|
|
exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp)
|
|
exp_idx = TimedeltaIndex(['1 day', '2 day', '3 day'])
|
|
|
|
arr, idx = idx1.factorize()
|
|
tm.assert_numpy_array_equal(arr, exp_arr)
|
|
tm.assert_index_equal(idx, exp_idx)
|
|
|
|
arr, idx = idx1.factorize(sort=True)
|
|
tm.assert_numpy_array_equal(arr, exp_arr)
|
|
tm.assert_index_equal(idx, exp_idx)
|
|
|
|
# freq must be preserved
|
|
idx3 = timedelta_range('1 day', periods=4, freq='s')
|
|
exp_arr = np.array([0, 1, 2, 3], dtype=np.intp)
|
|
arr, idx = idx3.factorize()
|
|
tm.assert_numpy_array_equal(arr, exp_arr)
|
|
tm.assert_index_equal(idx, idx3)
|
|
|
|
def test_join_self(self, join_type):
|
|
index = timedelta_range('1 day', periods=10)
|
|
joined = index.join(index, how=join_type)
|
|
tm.assert_index_equal(index, joined)
|
|
|
|
def test_does_not_convert_mixed_integer(self):
|
|
df = tm.makeCustomDataframe(10, 10,
|
|
data_gen_f=lambda *args, **kwargs: randn(),
|
|
r_idx_type='i', c_idx_type='td')
|
|
str(df)
|
|
|
|
cols = df.columns.join(df.index, how='outer')
|
|
joined = cols.join(df.columns)
|
|
assert cols.dtype == np.dtype('O')
|
|
assert cols.dtype == joined.dtype
|
|
tm.assert_index_equal(cols, joined)
|
|
|
|
def test_sort_values(self):
|
|
|
|
idx = TimedeltaIndex(['4d', '1d', '2d'])
|
|
|
|
ordered = idx.sort_values()
|
|
assert ordered.is_monotonic
|
|
|
|
ordered = idx.sort_values(ascending=False)
|
|
assert ordered[::-1].is_monotonic
|
|
|
|
ordered, dexer = idx.sort_values(return_indexer=True)
|
|
assert ordered.is_monotonic
|
|
|
|
tm.assert_numpy_array_equal(dexer, np.array([1, 2, 0]),
|
|
check_dtype=False)
|
|
|
|
ordered, dexer = idx.sort_values(return_indexer=True, ascending=False)
|
|
assert ordered[::-1].is_monotonic
|
|
|
|
tm.assert_numpy_array_equal(dexer, np.array([0, 2, 1]),
|
|
check_dtype=False)
|
|
|
|
def test_get_duplicates(self):
|
|
idx = TimedeltaIndex(['1 day', '2 day', '2 day', '3 day', '3day',
|
|
'4day'])
|
|
|
|
with warnings.catch_warnings(record=True):
|
|
# Deprecated - see GH20239
|
|
result = idx.get_duplicates()
|
|
|
|
ex = TimedeltaIndex(['2 day', '3day'])
|
|
tm.assert_index_equal(result, ex)
|
|
|
|
def test_argmin_argmax(self):
|
|
idx = TimedeltaIndex(['1 day 00:00:05', '1 day 00:00:01',
|
|
'1 day 00:00:02'])
|
|
assert idx.argmin() == 1
|
|
assert idx.argmax() == 0
|
|
|
|
def test_misc_coverage(self):
|
|
|
|
rng = timedelta_range('1 day', periods=5)
|
|
result = rng.groupby(rng.days)
|
|
assert isinstance(list(result.values())[0][0], Timedelta)
|
|
|
|
idx = TimedeltaIndex(['3d', '1d', '2d'])
|
|
assert not idx.equals(list(idx))
|
|
|
|
non_td = Index(list('abc'))
|
|
assert not idx.equals(list(non_td))
|
|
|
|
def test_map(self):
|
|
# test_map_dictlike generally tests
|
|
|
|
rng = timedelta_range('1 day', periods=10)
|
|
|
|
f = lambda x: x.days
|
|
result = rng.map(f)
|
|
exp = Int64Index([f(x) for x in rng])
|
|
tm.assert_index_equal(result, exp)
|
|
|
|
def test_pass_TimedeltaIndex_to_index(self):
|
|
|
|
rng = timedelta_range('1 days', '10 days')
|
|
idx = Index(rng, dtype=object)
|
|
|
|
expected = Index(rng.to_pytimedelta(), dtype=object)
|
|
|
|
tm.assert_numpy_array_equal(idx.values, expected.values)
|
|
|
|
def test_pickle(self):
|
|
|
|
rng = timedelta_range('1 days', periods=10)
|
|
rng_p = tm.round_trip_pickle(rng)
|
|
tm.assert_index_equal(rng, rng_p)
|
|
|
|
def test_hash_error(self):
|
|
index = timedelta_range('1 days', periods=10)
|
|
with tm.assert_raises_regex(TypeError, "unhashable type: %r" %
|
|
type(index).__name__):
|
|
hash(index)
|
|
|
|
def test_append_join_nondatetimeindex(self):
|
|
rng = timedelta_range('1 days', periods=10)
|
|
idx = Index(['a', 'b', 'c', 'd'])
|
|
|
|
result = rng.append(idx)
|
|
assert isinstance(result[0], Timedelta)
|
|
|
|
# it works
|
|
rng.join(idx, how='outer')
|
|
|
|
def test_append_numpy_bug_1681(self):
|
|
|
|
td = timedelta_range('1 days', '10 days', freq='2D')
|
|
a = DataFrame()
|
|
c = DataFrame({'A': 'foo', 'B': td}, index=td)
|
|
str(c)
|
|
|
|
result = a.append(c)
|
|
assert (result['B'] == td).all()
|
|
|
|
def test_fields(self):
|
|
rng = timedelta_range('1 days, 10:11:12.100123456', periods=2,
|
|
freq='s')
|
|
tm.assert_index_equal(rng.days, Index([1, 1], dtype='int64'))
|
|
tm.assert_index_equal(
|
|
rng.seconds,
|
|
Index([10 * 3600 + 11 * 60 + 12, 10 * 3600 + 11 * 60 + 13],
|
|
dtype='int64'))
|
|
tm.assert_index_equal(
|
|
rng.microseconds,
|
|
Index([100 * 1000 + 123, 100 * 1000 + 123], dtype='int64'))
|
|
tm.assert_index_equal(rng.nanoseconds,
|
|
Index([456, 456], dtype='int64'))
|
|
|
|
pytest.raises(AttributeError, lambda: rng.hours)
|
|
pytest.raises(AttributeError, lambda: rng.minutes)
|
|
pytest.raises(AttributeError, lambda: rng.milliseconds)
|
|
|
|
# with nat
|
|
s = Series(rng)
|
|
s[1] = np.nan
|
|
|
|
tm.assert_series_equal(s.dt.days, Series([1, np.nan], index=[0, 1]))
|
|
tm.assert_series_equal(s.dt.seconds, Series(
|
|
[10 * 3600 + 11 * 60 + 12, np.nan], index=[0, 1]))
|
|
|
|
# preserve name (GH15589)
|
|
rng.name = 'name'
|
|
assert rng.days.name == 'name'
|
|
|
|
def test_freq_conversion(self):
|
|
|
|
# doc example
|
|
|
|
# series
|
|
td = Series(date_range('20130101', periods=4)) - \
|
|
Series(date_range('20121201', periods=4))
|
|
td[2] += timedelta(minutes=5, seconds=3)
|
|
td[3] = np.nan
|
|
|
|
result = td / np.timedelta64(1, 'D')
|
|
expected = Series([31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan
|
|
])
|
|
assert_series_equal(result, expected)
|
|
|
|
result = td.astype('timedelta64[D]')
|
|
expected = Series([31, 31, 31, np.nan])
|
|
assert_series_equal(result, expected)
|
|
|
|
result = td / np.timedelta64(1, 's')
|
|
expected = Series([31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3,
|
|
np.nan])
|
|
assert_series_equal(result, expected)
|
|
|
|
result = td.astype('timedelta64[s]')
|
|
assert_series_equal(result, expected)
|
|
|
|
# tdi
|
|
td = TimedeltaIndex(td)
|
|
|
|
result = td / np.timedelta64(1, 'D')
|
|
expected = Index([31, 31, (31 * 86400 + 5 * 60 + 3) / 86400.0, np.nan])
|
|
assert_index_equal(result, expected)
|
|
|
|
result = td.astype('timedelta64[D]')
|
|
expected = Index([31, 31, 31, np.nan])
|
|
assert_index_equal(result, expected)
|
|
|
|
result = td / np.timedelta64(1, 's')
|
|
expected = Index([31 * 86400, 31 * 86400, 31 * 86400 + 5 * 60 + 3,
|
|
np.nan])
|
|
assert_index_equal(result, expected)
|
|
|
|
result = td.astype('timedelta64[s]')
|
|
assert_index_equal(result, expected)
|
|
|
|
|
|
class TestTimeSeries(object):
|
|
|
|
def test_series_box_timedelta(self):
|
|
rng = timedelta_range('1 day 1 s', periods=5, freq='h')
|
|
s = Series(rng)
|
|
assert isinstance(s[1], Timedelta)
|
|
assert isinstance(s.iat[2], Timedelta)
|