385 lines
14 KiB
Python
385 lines
14 KiB
Python
import warnings
|
|
|
|
import pytest
|
|
|
|
import numpy as np
|
|
from datetime import date
|
|
|
|
import dateutil
|
|
import pandas as pd
|
|
import pandas.util.testing as tm
|
|
from pandas.compat import lrange
|
|
from pandas import (DatetimeIndex, Index, date_range, DataFrame,
|
|
Timestamp, offsets)
|
|
|
|
from pandas.util.testing import assert_almost_equal
|
|
|
|
randn = np.random.randn
|
|
|
|
|
|
class TestDatetimeIndex(object):
|
|
|
|
def test_roundtrip_pickle_with_tz(self):
|
|
|
|
# GH 8367
|
|
# round-trip of timezone
|
|
index = date_range('20130101', periods=3, tz='US/Eastern', name='foo')
|
|
unpickled = tm.round_trip_pickle(index)
|
|
tm.assert_index_equal(index, unpickled)
|
|
|
|
def test_reindex_preserves_tz_if_target_is_empty_list_or_array(self):
|
|
# GH7774
|
|
index = date_range('20130101', periods=3, tz='US/Eastern')
|
|
assert str(index.reindex([])[0].tz) == 'US/Eastern'
|
|
assert str(index.reindex(np.array([]))[0].tz) == 'US/Eastern'
|
|
|
|
def test_time_loc(self): # GH8667
|
|
from datetime import time
|
|
from pandas._libs.index import _SIZE_CUTOFF
|
|
|
|
ns = _SIZE_CUTOFF + np.array([-100, 100], dtype=np.int64)
|
|
key = time(15, 11, 30)
|
|
start = key.hour * 3600 + key.minute * 60 + key.second
|
|
step = 24 * 3600
|
|
|
|
for n in ns:
|
|
idx = pd.date_range('2014-11-26', periods=n, freq='S')
|
|
ts = pd.Series(np.random.randn(n), index=idx)
|
|
i = np.arange(start, n, step)
|
|
|
|
tm.assert_numpy_array_equal(ts.index.get_loc(key), i,
|
|
check_dtype=False)
|
|
tm.assert_series_equal(ts[key], ts.iloc[i])
|
|
|
|
left, right = ts.copy(), ts.copy()
|
|
left[key] *= -10
|
|
right.iloc[i] *= -10
|
|
tm.assert_series_equal(left, right)
|
|
|
|
def test_time_overflow_for_32bit_machines(self):
|
|
# GH8943. On some machines NumPy defaults to np.int32 (for example,
|
|
# 32-bit Linux machines). In the function _generate_regular_range
|
|
# found in tseries/index.py, `periods` gets multiplied by `strides`
|
|
# (which has value 1e9) and since the max value for np.int32 is ~2e9,
|
|
# and since those machines won't promote np.int32 to np.int64, we get
|
|
# overflow.
|
|
periods = np.int_(1000)
|
|
|
|
idx1 = pd.date_range(start='2000', periods=periods, freq='S')
|
|
assert len(idx1) == periods
|
|
|
|
idx2 = pd.date_range(end='2000', periods=periods, freq='S')
|
|
assert len(idx2) == periods
|
|
|
|
def test_nat(self):
|
|
assert DatetimeIndex([np.nan])[0] is pd.NaT
|
|
|
|
def test_week_of_month_frequency(self):
|
|
# GH 5348: "ValueError: Could not evaluate WOM-1SUN" shouldn't raise
|
|
d1 = date(2002, 9, 1)
|
|
d2 = date(2013, 10, 27)
|
|
d3 = date(2012, 9, 30)
|
|
idx1 = DatetimeIndex([d1, d2])
|
|
idx2 = DatetimeIndex([d3])
|
|
result_append = idx1.append(idx2)
|
|
expected = DatetimeIndex([d1, d2, d3])
|
|
tm.assert_index_equal(result_append, expected)
|
|
result_union = idx1.union(idx2)
|
|
expected = DatetimeIndex([d1, d3, d2])
|
|
tm.assert_index_equal(result_union, expected)
|
|
|
|
# GH 5115
|
|
result = date_range("2013-1-1", periods=4, freq='WOM-1SAT')
|
|
dates = ['2013-01-05', '2013-02-02', '2013-03-02', '2013-04-06']
|
|
expected = DatetimeIndex(dates, freq='WOM-1SAT')
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_hash_error(self):
|
|
index = date_range('20010101', periods=10)
|
|
with tm.assert_raises_regex(TypeError, "unhashable type: %r" %
|
|
type(index).__name__):
|
|
hash(index)
|
|
|
|
def test_stringified_slice_with_tz(self):
|
|
# GH2658
|
|
import datetime
|
|
start = datetime.datetime.now()
|
|
idx = DatetimeIndex(start=start, freq="1d", periods=10)
|
|
df = DataFrame(lrange(10), index=idx)
|
|
df["2013-01-14 23:44:34.437768-05:00":] # no exception here
|
|
|
|
def test_append_join_nondatetimeindex(self):
|
|
rng = date_range('1/1/2000', periods=10)
|
|
idx = Index(['a', 'b', 'c', 'd'])
|
|
|
|
result = rng.append(idx)
|
|
assert isinstance(result[0], Timestamp)
|
|
|
|
# it works
|
|
rng.join(idx, how='outer')
|
|
|
|
def test_map(self):
|
|
rng = date_range('1/1/2000', periods=10)
|
|
|
|
f = lambda x: x.strftime('%Y%m%d')
|
|
result = rng.map(f)
|
|
exp = Index([f(x) for x in rng], dtype='<U8')
|
|
tm.assert_index_equal(result, exp)
|
|
|
|
def test_iteration_preserves_tz(self):
|
|
# see gh-8890
|
|
index = date_range("2012-01-01", periods=3, freq='H', tz='US/Eastern')
|
|
|
|
for i, ts in enumerate(index):
|
|
result = ts
|
|
expected = index[i]
|
|
assert result == expected
|
|
|
|
index = date_range("2012-01-01", periods=3, freq='H',
|
|
tz=dateutil.tz.tzoffset(None, -28800))
|
|
|
|
for i, ts in enumerate(index):
|
|
result = ts
|
|
expected = index[i]
|
|
assert result._repr_base == expected._repr_base
|
|
assert result == expected
|
|
|
|
# 9100
|
|
index = pd.DatetimeIndex(['2014-12-01 03:32:39.987000-08:00',
|
|
'2014-12-01 04:12:34.987000-08:00'])
|
|
for i, ts in enumerate(index):
|
|
result = ts
|
|
expected = index[i]
|
|
assert result._repr_base == expected._repr_base
|
|
assert result == expected
|
|
|
|
@pytest.mark.parametrize('periods', [0, 9999, 10000, 10001])
|
|
def test_iteration_over_chunksize(self, periods):
|
|
# GH21012
|
|
|
|
index = date_range('2000-01-01 00:00:00', periods=periods, freq='min')
|
|
num = 0
|
|
for stamp in index:
|
|
assert index[num] == stamp
|
|
num += 1
|
|
assert num == len(index)
|
|
|
|
def test_misc_coverage(self):
|
|
rng = date_range('1/1/2000', periods=5)
|
|
result = rng.groupby(rng.day)
|
|
assert isinstance(list(result.values())[0][0], Timestamp)
|
|
|
|
idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02'])
|
|
assert not idx.equals(list(idx))
|
|
|
|
non_datetime = Index(list('abc'))
|
|
assert not idx.equals(list(non_datetime))
|
|
|
|
def test_string_index_series_name_converted(self):
|
|
# #1644
|
|
df = DataFrame(np.random.randn(10, 4),
|
|
index=date_range('1/1/2000', periods=10))
|
|
|
|
result = df.loc['1/3/2000']
|
|
assert result.name == df.index[2]
|
|
|
|
result = df.T['1/3/2000']
|
|
assert result.name == df.index[2]
|
|
|
|
def test_get_duplicates(self):
|
|
idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-02',
|
|
'2000-01-03', '2000-01-03', '2000-01-04'])
|
|
|
|
with warnings.catch_warnings(record=True):
|
|
# Deprecated - see GH20239
|
|
result = idx.get_duplicates()
|
|
|
|
ex = DatetimeIndex(['2000-01-02', '2000-01-03'])
|
|
tm.assert_index_equal(result, ex)
|
|
|
|
def test_argmin_argmax(self):
|
|
idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02'])
|
|
assert idx.argmin() == 1
|
|
assert idx.argmax() == 0
|
|
|
|
def test_sort_values(self):
|
|
idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02'])
|
|
|
|
ordered = idx.sort_values()
|
|
assert ordered.is_monotonic
|
|
|
|
ordered = idx.sort_values(ascending=False)
|
|
assert ordered[::-1].is_monotonic
|
|
|
|
ordered, dexer = idx.sort_values(return_indexer=True)
|
|
assert ordered.is_monotonic
|
|
tm.assert_numpy_array_equal(dexer, np.array([1, 2, 0], dtype=np.intp))
|
|
|
|
ordered, dexer = idx.sort_values(return_indexer=True, ascending=False)
|
|
assert ordered[::-1].is_monotonic
|
|
tm.assert_numpy_array_equal(dexer, np.array([0, 2, 1], dtype=np.intp))
|
|
|
|
def test_map_bug_1677(self):
|
|
index = DatetimeIndex(['2012-04-25 09:30:00.393000'])
|
|
f = index.asof
|
|
|
|
result = index.map(f)
|
|
expected = Index([f(index[0])])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_groupby_function_tuple_1677(self):
|
|
df = DataFrame(np.random.rand(100),
|
|
index=date_range("1/1/2000", periods=100))
|
|
monthly_group = df.groupby(lambda x: (x.year, x.month))
|
|
|
|
result = monthly_group.mean()
|
|
assert isinstance(result.index[0], tuple)
|
|
|
|
def test_append_numpy_bug_1681(self):
|
|
# another datetime64 bug
|
|
dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI')
|
|
a = DataFrame()
|
|
c = DataFrame({'A': 'foo', 'B': dr}, index=dr)
|
|
|
|
result = a.append(c)
|
|
assert (result['B'] == dr).all()
|
|
|
|
def test_isin(self):
|
|
index = tm.makeDateIndex(4)
|
|
result = index.isin(index)
|
|
assert result.all()
|
|
|
|
result = index.isin(list(index))
|
|
assert result.all()
|
|
|
|
assert_almost_equal(index.isin([index[2], 5]),
|
|
np.array([False, False, True, False]))
|
|
|
|
def test_does_not_convert_mixed_integer(self):
|
|
df = tm.makeCustomDataframe(10, 10,
|
|
data_gen_f=lambda *args, **kwargs: randn(),
|
|
r_idx_type='i', c_idx_type='dt')
|
|
cols = df.columns.join(df.index, how='outer')
|
|
joined = cols.join(df.columns)
|
|
assert cols.dtype == np.dtype('O')
|
|
assert cols.dtype == joined.dtype
|
|
tm.assert_numpy_array_equal(cols.values, joined.values)
|
|
|
|
def test_join_self(self, join_type):
|
|
index = date_range('1/1/2000', periods=10)
|
|
joined = index.join(index, how=join_type)
|
|
assert index is joined
|
|
|
|
def assert_index_parameters(self, index):
|
|
assert index.freq == '40960N'
|
|
assert index.inferred_freq == '40960N'
|
|
|
|
def test_ns_index(self):
|
|
nsamples = 400
|
|
ns = int(1e9 / 24414)
|
|
dtstart = np.datetime64('2012-09-20T00:00:00')
|
|
|
|
dt = dtstart + np.arange(nsamples) * np.timedelta64(ns, 'ns')
|
|
freq = ns * offsets.Nano()
|
|
index = pd.DatetimeIndex(dt, freq=freq, name='time')
|
|
self.assert_index_parameters(index)
|
|
|
|
new_index = pd.DatetimeIndex(start=index[0], end=index[-1],
|
|
freq=index.freq)
|
|
self.assert_index_parameters(new_index)
|
|
|
|
def test_join_with_period_index(self, join_type):
|
|
df = tm.makeCustomDataframe(
|
|
10, 10, data_gen_f=lambda *args: np.random.randint(2),
|
|
c_idx_type='p', r_idx_type='dt')
|
|
s = df.iloc[:5, 0]
|
|
|
|
with tm.assert_raises_regex(ValueError,
|
|
'can only call with other '
|
|
'PeriodIndex-ed objects'):
|
|
df.columns.join(s.index, how=join_type)
|
|
|
|
def test_factorize(self):
|
|
idx1 = DatetimeIndex(['2014-01', '2014-01', '2014-02', '2014-02',
|
|
'2014-03', '2014-03'])
|
|
|
|
exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp)
|
|
exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03'])
|
|
|
|
arr, idx = idx1.factorize()
|
|
tm.assert_numpy_array_equal(arr, exp_arr)
|
|
tm.assert_index_equal(idx, exp_idx)
|
|
|
|
arr, idx = idx1.factorize(sort=True)
|
|
tm.assert_numpy_array_equal(arr, exp_arr)
|
|
tm.assert_index_equal(idx, exp_idx)
|
|
|
|
# tz must be preserved
|
|
idx1 = idx1.tz_localize('Asia/Tokyo')
|
|
exp_idx = exp_idx.tz_localize('Asia/Tokyo')
|
|
|
|
arr, idx = idx1.factorize()
|
|
tm.assert_numpy_array_equal(arr, exp_arr)
|
|
tm.assert_index_equal(idx, exp_idx)
|
|
|
|
idx2 = pd.DatetimeIndex(['2014-03', '2014-03', '2014-02', '2014-01',
|
|
'2014-03', '2014-01'])
|
|
|
|
exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype=np.intp)
|
|
exp_idx = DatetimeIndex(['2014-01', '2014-02', '2014-03'])
|
|
arr, idx = idx2.factorize(sort=True)
|
|
tm.assert_numpy_array_equal(arr, exp_arr)
|
|
tm.assert_index_equal(idx, exp_idx)
|
|
|
|
exp_arr = np.array([0, 0, 1, 2, 0, 2], dtype=np.intp)
|
|
exp_idx = DatetimeIndex(['2014-03', '2014-02', '2014-01'])
|
|
arr, idx = idx2.factorize()
|
|
tm.assert_numpy_array_equal(arr, exp_arr)
|
|
tm.assert_index_equal(idx, exp_idx)
|
|
|
|
# freq must be preserved
|
|
idx3 = date_range('2000-01', periods=4, freq='M', tz='Asia/Tokyo')
|
|
exp_arr = np.array([0, 1, 2, 3], dtype=np.intp)
|
|
arr, idx = idx3.factorize()
|
|
tm.assert_numpy_array_equal(arr, exp_arr)
|
|
tm.assert_index_equal(idx, idx3)
|
|
|
|
def test_factorize_tz(self, tz_naive_fixture):
|
|
tz = tz_naive_fixture
|
|
# GH#13750
|
|
base = pd.date_range('2016-11-05', freq='H', periods=100, tz=tz)
|
|
idx = base.repeat(5)
|
|
|
|
exp_arr = np.arange(100, dtype=np.intp).repeat(5)
|
|
|
|
for obj in [idx, pd.Series(idx)]:
|
|
arr, res = obj.factorize()
|
|
tm.assert_numpy_array_equal(arr, exp_arr)
|
|
tm.assert_index_equal(res, base)
|
|
|
|
def test_factorize_dst(self):
|
|
# GH 13750
|
|
idx = pd.date_range('2016-11-06', freq='H', periods=12,
|
|
tz='US/Eastern')
|
|
|
|
for obj in [idx, pd.Series(idx)]:
|
|
arr, res = obj.factorize()
|
|
tm.assert_numpy_array_equal(arr, np.arange(12, dtype=np.intp))
|
|
tm.assert_index_equal(res, idx)
|
|
|
|
idx = pd.date_range('2016-06-13', freq='H', periods=12,
|
|
tz='US/Eastern')
|
|
|
|
for obj in [idx, pd.Series(idx)]:
|
|
arr, res = obj.factorize()
|
|
tm.assert_numpy_array_equal(arr, np.arange(12, dtype=np.intp))
|
|
tm.assert_index_equal(res, idx)
|
|
|
|
@pytest.mark.parametrize('arr, expected', [
|
|
(pd.DatetimeIndex(['2017', '2017']), pd.DatetimeIndex(['2017'])),
|
|
(pd.DatetimeIndex(['2017', '2017'], tz='US/Eastern'),
|
|
pd.DatetimeIndex(['2017'], tz='US/Eastern')),
|
|
])
|
|
def test_unique(self, arr, expected):
|
|
result = arr.unique()
|
|
tm.assert_index_equal(result, expected)
|