laywerrobot/lib/python3.6/site-packages/pandas/tests/groupby/test_grouping.py
2020-08-27 21:55:39 +02:00

809 lines
31 KiB
Python

# -*- coding: utf-8 -*-
""" test where we are determining what we are grouping, or getting groups """
import pytest
from warnings import catch_warnings
from pandas import (date_range, Timestamp,
Index, MultiIndex, DataFrame, Series, CategoricalIndex)
from pandas.util.testing import (assert_panel_equal, assert_frame_equal,
assert_series_equal, assert_almost_equal)
from pandas.core.groupby.groupby import Grouping
from pandas.compat import lrange, long
from pandas import compat
import numpy as np
import pandas.util.testing as tm
import pandas as pd
# selection
# --------------------------------
class TestSelection():
def test_select_bad_cols(self):
df = DataFrame([[1, 2]], columns=['A', 'B'])
g = df.groupby('A')
pytest.raises(KeyError, g.__getitem__, ['C']) # g[['C']]
pytest.raises(KeyError, g.__getitem__, ['A', 'C']) # g[['A', 'C']]
with tm.assert_raises_regex(KeyError, '^[^A]+$'):
# A should not be referenced as a bad column...
# will have to rethink regex if you change message!
g[['A', 'C']]
def test_groupby_duplicated_column_errormsg(self):
# GH7511
df = DataFrame(columns=['A', 'B', 'A', 'C'],
data=[range(4), range(2, 6), range(0, 8, 2)])
pytest.raises(ValueError, df.groupby, 'A')
pytest.raises(ValueError, df.groupby, ['A', 'B'])
grouped = df.groupby('B')
c = grouped.count()
assert c.columns.nlevels == 1
assert c.columns.size == 3
def test_column_select_via_attr(self, df):
result = df.groupby('A').C.sum()
expected = df.groupby('A')['C'].sum()
assert_series_equal(result, expected)
df['mean'] = 1.5
result = df.groupby('A').mean()
expected = df.groupby('A').agg(np.mean)
assert_frame_equal(result, expected)
def test_getitem_list_of_columns(self):
df = DataFrame(
{'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
'C': np.random.randn(8),
'D': np.random.randn(8),
'E': np.random.randn(8)})
result = df.groupby('A')[['C', 'D']].mean()
result2 = df.groupby('A')['C', 'D'].mean()
result3 = df.groupby('A')[df.columns[2:4]].mean()
expected = df.loc[:, ['A', 'C', 'D']].groupby('A').mean()
assert_frame_equal(result, expected)
assert_frame_equal(result2, expected)
assert_frame_equal(result3, expected)
def test_getitem_numeric_column_names(self):
# GH #13731
df = DataFrame({0: list('abcd') * 2,
2: np.random.randn(8),
4: np.random.randn(8),
6: np.random.randn(8)})
result = df.groupby(0)[df.columns[1:3]].mean()
result2 = df.groupby(0)[2, 4].mean()
result3 = df.groupby(0)[[2, 4]].mean()
expected = df.loc[:, [0, 2, 4]].groupby(0).mean()
assert_frame_equal(result, expected)
assert_frame_equal(result2, expected)
assert_frame_equal(result3, expected)
# grouping
# --------------------------------
class TestGrouping():
def test_grouper_index_types(self):
# related GH5375
# groupby misbehaving when using a Floatlike index
df = DataFrame(np.arange(10).reshape(5, 2), columns=list('AB'))
for index in [tm.makeFloatIndex, tm.makeStringIndex,
tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex,
tm.makePeriodIndex]:
df.index = index(len(df))
df.groupby(list('abcde')).apply(lambda x: x)
df.index = list(reversed(df.index.tolist()))
df.groupby(list('abcde')).apply(lambda x: x)
def test_grouper_multilevel_freq(self):
# GH 7885
# with level and freq specified in a pd.Grouper
from datetime import date, timedelta
d0 = date.today() - timedelta(days=14)
dates = date_range(d0, date.today())
date_index = pd.MultiIndex.from_product(
[dates, dates], names=['foo', 'bar'])
df = pd.DataFrame(np.random.randint(0, 100, 225), index=date_index)
# Check string level
expected = df.reset_index().groupby([pd.Grouper(
key='foo', freq='W'), pd.Grouper(key='bar', freq='W')]).sum()
# reset index changes columns dtype to object
expected.columns = pd.Index([0], dtype='int64')
result = df.groupby([pd.Grouper(level='foo', freq='W'), pd.Grouper(
level='bar', freq='W')]).sum()
assert_frame_equal(result, expected)
# Check integer level
result = df.groupby([pd.Grouper(level=0, freq='W'), pd.Grouper(
level=1, freq='W')]).sum()
assert_frame_equal(result, expected)
def test_grouper_creation_bug(self):
# GH 8795
df = DataFrame({'A': [0, 0, 1, 1, 2, 2], 'B': [1, 2, 3, 4, 5, 6]})
g = df.groupby('A')
expected = g.sum()
g = df.groupby(pd.Grouper(key='A'))
result = g.sum()
assert_frame_equal(result, expected)
result = g.apply(lambda x: x.sum())
assert_frame_equal(result, expected)
g = df.groupby(pd.Grouper(key='A', axis=0))
result = g.sum()
assert_frame_equal(result, expected)
# GH14334
# pd.Grouper(key=...) may be passed in a list
df = DataFrame({'A': [0, 0, 0, 1, 1, 1],
'B': [1, 1, 2, 2, 3, 3],
'C': [1, 2, 3, 4, 5, 6]})
# Group by single column
expected = df.groupby('A').sum()
g = df.groupby([pd.Grouper(key='A')])
result = g.sum()
assert_frame_equal(result, expected)
# Group by two columns
# using a combination of strings and Grouper objects
expected = df.groupby(['A', 'B']).sum()
# Group with two Grouper objects
g = df.groupby([pd.Grouper(key='A'), pd.Grouper(key='B')])
result = g.sum()
assert_frame_equal(result, expected)
# Group with a string and a Grouper object
g = df.groupby(['A', pd.Grouper(key='B')])
result = g.sum()
assert_frame_equal(result, expected)
# Group with a Grouper object and a string
g = df.groupby([pd.Grouper(key='A'), 'B'])
result = g.sum()
assert_frame_equal(result, expected)
# GH8866
s = Series(np.arange(8, dtype='int64'),
index=pd.MultiIndex.from_product(
[list('ab'), range(2),
date_range('20130101', periods=2)],
names=['one', 'two', 'three']))
result = s.groupby(pd.Grouper(level='three', freq='M')).sum()
expected = Series([28], index=Index(
[Timestamp('2013-01-31')], freq='M', name='three'))
assert_series_equal(result, expected)
# just specifying a level breaks
result = s.groupby(pd.Grouper(level='one')).sum()
expected = s.groupby(level='one').sum()
assert_series_equal(result, expected)
def test_grouper_column_and_index(self):
# GH 14327
# Grouping a multi-index frame by a column and an index level should
# be equivalent to resetting the index and grouping by two columns
idx = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('a', 3),
('b', 1), ('b', 2), ('b', 3)])
idx.names = ['outer', 'inner']
df_multi = pd.DataFrame({"A": np.arange(6),
'B': ['one', 'one', 'two',
'two', 'one', 'one']},
index=idx)
result = df_multi.groupby(['B', pd.Grouper(level='inner')]).mean()
expected = df_multi.reset_index().groupby(['B', 'inner']).mean()
assert_frame_equal(result, expected)
# Test the reverse grouping order
result = df_multi.groupby([pd.Grouper(level='inner'), 'B']).mean()
expected = df_multi.reset_index().groupby(['inner', 'B']).mean()
assert_frame_equal(result, expected)
# Grouping a single-index frame by a column and the index should
# be equivalent to resetting the index and grouping by two columns
df_single = df_multi.reset_index('outer')
result = df_single.groupby(['B', pd.Grouper(level='inner')]).mean()
expected = df_single.reset_index().groupby(['B', 'inner']).mean()
assert_frame_equal(result, expected)
# Test the reverse grouping order
result = df_single.groupby([pd.Grouper(level='inner'), 'B']).mean()
expected = df_single.reset_index().groupby(['inner', 'B']).mean()
assert_frame_equal(result, expected)
def test_groupby_levels_and_columns(self):
# GH9344, GH9049
idx_names = ['x', 'y']
idx = pd.MultiIndex.from_tuples(
[(1, 1), (1, 2), (3, 4), (5, 6)], names=idx_names)
df = pd.DataFrame(np.arange(12).reshape(-1, 3), index=idx)
by_levels = df.groupby(level=idx_names).mean()
# reset_index changes columns dtype to object
by_columns = df.reset_index().groupby(idx_names).mean()
tm.assert_frame_equal(by_levels, by_columns, check_column_type=False)
by_columns.columns = pd.Index(by_columns.columns, dtype=np.int64)
tm.assert_frame_equal(by_levels, by_columns)
def test_groupby_categorical_index_and_columns(self, observed):
# GH18432
columns = ['A', 'B', 'A', 'B']
categories = ['B', 'A']
data = np.ones((5, 4), int)
cat_columns = CategoricalIndex(columns,
categories=categories,
ordered=True)
df = DataFrame(data=data, columns=cat_columns)
result = df.groupby(axis=1, level=0, observed=observed).sum()
expected_data = 2 * np.ones((5, 2), int)
if observed:
# if we are not-observed we undergo a reindex
# so need to adjust the output as our expected sets us up
# to be non-observed
expected_columns = CategoricalIndex(['A', 'B'],
categories=categories,
ordered=True)
else:
expected_columns = CategoricalIndex(categories,
categories=categories,
ordered=True)
expected = DataFrame(data=expected_data, columns=expected_columns)
assert_frame_equal(result, expected)
# test transposed version
df = DataFrame(data.T, index=cat_columns)
result = df.groupby(axis=0, level=0, observed=observed).sum()
expected = DataFrame(data=expected_data.T, index=expected_columns)
assert_frame_equal(result, expected)
def test_grouper_getting_correct_binner(self):
# GH 10063
# using a non-time-based grouper and a time-based grouper
# and specifying levels
df = DataFrame({'A': 1}, index=pd.MultiIndex.from_product(
[list('ab'), date_range('20130101', periods=80)], names=['one',
'two']))
result = df.groupby([pd.Grouper(level='one'), pd.Grouper(
level='two', freq='M')]).sum()
expected = DataFrame({'A': [31, 28, 21, 31, 28, 21]},
index=MultiIndex.from_product(
[list('ab'),
date_range('20130101', freq='M', periods=3)],
names=['one', 'two']))
assert_frame_equal(result, expected)
def test_grouper_iter(self, df):
assert sorted(df.groupby('A').grouper) == ['bar', 'foo']
def test_empty_groups(self, df):
# see gh-1048
pytest.raises(ValueError, df.groupby, [])
def test_groupby_grouper(self, df):
grouped = df.groupby('A')
result = df.groupby(grouped.grouper).mean()
expected = grouped.mean()
tm.assert_frame_equal(result, expected)
def test_groupby_dict_mapping(self):
# GH #679
from pandas import Series
s = Series({'T1': 5})
result = s.groupby({'T1': 'T2'}).agg(sum)
expected = s.groupby(['T2']).agg(sum)
assert_series_equal(result, expected)
s = Series([1., 2., 3., 4.], index=list('abcd'))
mapping = {'a': 0, 'b': 0, 'c': 1, 'd': 1}
result = s.groupby(mapping).mean()
result2 = s.groupby(mapping).agg(np.mean)
expected = s.groupby([0, 0, 1, 1]).mean()
expected2 = s.groupby([0, 0, 1, 1]).mean()
assert_series_equal(result, expected)
assert_series_equal(result, result2)
assert_series_equal(result, expected2)
def test_groupby_grouper_f_sanity_checked(self):
dates = date_range('01-Jan-2013', periods=12, freq='MS')
ts = Series(np.random.randn(12), index=dates)
# GH3035
# index.map is used to apply grouper to the index
# if it fails on the elements, map tries it on the entire index as
# a sequence. That can yield invalid results that cause trouble
# down the line.
# the surprise comes from using key[0:6] rather then str(key)[0:6]
# when the elements are Timestamp.
# the result is Index[0:6], very confusing.
pytest.raises(AssertionError, ts.groupby, lambda key: key[0:6])
def test_grouping_error_on_multidim_input(self, df):
pytest.raises(ValueError,
Grouping, df.index, df[['A', 'A']])
def test_multiindex_passthru(self):
# GH 7997
# regression from 0.14.1
df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
df.columns = pd.MultiIndex.from_tuples([(0, 1), (1, 1), (2, 1)])
result = df.groupby(axis=1, level=[0, 1]).first()
assert_frame_equal(result, df)
def test_multiindex_negative_level(self, mframe):
# GH 13901
result = mframe.groupby(level=-1).sum()
expected = mframe.groupby(level='second').sum()
assert_frame_equal(result, expected)
result = mframe.groupby(level=-2).sum()
expected = mframe.groupby(level='first').sum()
assert_frame_equal(result, expected)
result = mframe.groupby(level=[-2, -1]).sum()
expected = mframe
assert_frame_equal(result, expected)
result = mframe.groupby(level=[-1, 'first']).sum()
expected = mframe.groupby(level=['second', 'first']).sum()
assert_frame_equal(result, expected)
def test_multifunc_select_col_integer_cols(self, df):
df.columns = np.arange(len(df.columns))
# it works!
df.groupby(1, as_index=False)[2].agg({'Q': np.mean})
def test_multiindex_columns_empty_level(self):
lst = [['count', 'values'], ['to filter', '']]
midx = MultiIndex.from_tuples(lst)
df = DataFrame([[long(1), 'A']], columns=midx)
grouped = df.groupby('to filter').groups
assert grouped['A'] == [0]
grouped = df.groupby([('to filter', '')]).groups
assert grouped['A'] == [0]
df = DataFrame([[long(1), 'A'], [long(2), 'B']], columns=midx)
expected = df.groupby('to filter').groups
result = df.groupby([('to filter', '')]).groups
assert result == expected
df = DataFrame([[long(1), 'A'], [long(2), 'A']], columns=midx)
expected = df.groupby('to filter').groups
result = df.groupby([('to filter', '')]).groups
tm.assert_dict_equal(result, expected)
def test_groupby_multiindex_tuple(self):
# GH 17979
df = pd.DataFrame([[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]],
columns=pd.MultiIndex.from_arrays(
[['a', 'b', 'b', 'c'],
[1, 1, 2, 2]]))
expected = df.groupby([('b', 1)]).groups
result = df.groupby(('b', 1)).groups
tm.assert_dict_equal(expected, result)
df2 = pd.DataFrame(df.values,
columns=pd.MultiIndex.from_arrays(
[['a', 'b', 'b', 'c'],
['d', 'd', 'e', 'e']]))
expected = df2.groupby([('b', 'd')]).groups
result = df.groupby(('b', 1)).groups
tm.assert_dict_equal(expected, result)
df3 = pd.DataFrame(df.values,
columns=[('a', 'd'), ('b', 'd'), ('b', 'e'), 'c'])
expected = df3.groupby([('b', 'd')]).groups
result = df.groupby(('b', 1)).groups
tm.assert_dict_equal(expected, result)
@pytest.mark.parametrize('sort', [True, False])
def test_groupby_level(self, sort, mframe, df):
# GH 17537
frame = mframe
deleveled = frame.reset_index()
result0 = frame.groupby(level=0, sort=sort).sum()
result1 = frame.groupby(level=1, sort=sort).sum()
expected0 = frame.groupby(deleveled['first'].values, sort=sort).sum()
expected1 = frame.groupby(deleveled['second'].values, sort=sort).sum()
expected0.index.name = 'first'
expected1.index.name = 'second'
assert result0.index.name == 'first'
assert result1.index.name == 'second'
assert_frame_equal(result0, expected0)
assert_frame_equal(result1, expected1)
assert result0.index.name == frame.index.names[0]
assert result1.index.name == frame.index.names[1]
# groupby level name
result0 = frame.groupby(level='first', sort=sort).sum()
result1 = frame.groupby(level='second', sort=sort).sum()
assert_frame_equal(result0, expected0)
assert_frame_equal(result1, expected1)
# axis=1
result0 = frame.T.groupby(level=0, axis=1, sort=sort).sum()
result1 = frame.T.groupby(level=1, axis=1, sort=sort).sum()
assert_frame_equal(result0, expected0.T)
assert_frame_equal(result1, expected1.T)
# raise exception for non-MultiIndex
pytest.raises(ValueError, df.groupby, level=1)
def test_groupby_level_index_names(self):
# GH4014 this used to raise ValueError since 'exp'>1 (in py2)
df = DataFrame({'exp': ['A'] * 3 + ['B'] * 3,
'var1': lrange(6), }).set_index('exp')
df.groupby(level='exp')
pytest.raises(ValueError, df.groupby, level='foo')
@pytest.mark.parametrize('sort', [True, False])
def test_groupby_level_with_nas(self, sort):
# GH 17537
index = MultiIndex(levels=[[1, 0], [0, 1, 2, 3]],
labels=[[1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 2, 3, 0, 1,
2, 3]])
# factorizing doesn't confuse things
s = Series(np.arange(8.), index=index)
result = s.groupby(level=0, sort=sort).sum()
expected = Series([6., 22.], index=[0, 1])
assert_series_equal(result, expected)
index = MultiIndex(levels=[[1, 0], [0, 1, 2, 3]],
labels=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0,
1, 2, 3]])
# factorizing doesn't confuse things
s = Series(np.arange(8.), index=index)
result = s.groupby(level=0, sort=sort).sum()
expected = Series([6., 18.], index=[0.0, 1.0])
assert_series_equal(result, expected)
def test_groupby_args(self, mframe):
# PR8618 and issue 8015
frame = mframe
def j():
frame.groupby()
tm.assert_raises_regex(TypeError, "You have to supply one of "
"'by' and 'level'", j)
def k():
frame.groupby(by=None, level=None)
tm.assert_raises_regex(TypeError, "You have to supply one of "
"'by' and 'level'", k)
@pytest.mark.parametrize('sort,labels', [
[True, [2, 2, 2, 0, 0, 1, 1, 3, 3, 3]],
[False, [0, 0, 0, 1, 1, 2, 2, 3, 3, 3]]
])
def test_level_preserve_order(self, sort, labels, mframe):
# GH 17537
grouped = mframe.groupby(level=0, sort=sort)
exp_labels = np.array(labels, np.intp)
assert_almost_equal(grouped.grouper.labels[0], exp_labels)
def test_grouping_labels(self, mframe):
grouped = mframe.groupby(mframe.index.get_level_values(0))
exp_labels = np.array([2, 2, 2, 0, 0, 1, 1, 3, 3, 3], dtype=np.intp)
assert_almost_equal(grouped.grouper.labels[0], exp_labels)
# get_group
# --------------------------------
class TestGetGroup():
def test_get_group(self):
with catch_warnings(record=True):
wp = tm.makePanel()
grouped = wp.groupby(lambda x: x.month, axis='major')
gp = grouped.get_group(1)
expected = wp.reindex(
major=[x for x in wp.major_axis if x.month == 1])
assert_panel_equal(gp, expected)
# GH 5267
# be datelike friendly
df = DataFrame({'DATE': pd.to_datetime(
['10-Oct-2013', '10-Oct-2013', '10-Oct-2013', '11-Oct-2013',
'11-Oct-2013', '11-Oct-2013']),
'label': ['foo', 'foo', 'bar', 'foo', 'foo', 'bar'],
'VAL': [1, 2, 3, 4, 5, 6]})
g = df.groupby('DATE')
key = list(g.groups)[0]
result1 = g.get_group(key)
result2 = g.get_group(Timestamp(key).to_pydatetime())
result3 = g.get_group(str(Timestamp(key)))
assert_frame_equal(result1, result2)
assert_frame_equal(result1, result3)
g = df.groupby(['DATE', 'label'])
key = list(g.groups)[0]
result1 = g.get_group(key)
result2 = g.get_group((Timestamp(key[0]).to_pydatetime(), key[1]))
result3 = g.get_group((str(Timestamp(key[0])), key[1]))
assert_frame_equal(result1, result2)
assert_frame_equal(result1, result3)
# must pass a same-length tuple with multiple keys
pytest.raises(ValueError, lambda: g.get_group('foo'))
pytest.raises(ValueError, lambda: g.get_group(('foo')))
pytest.raises(ValueError,
lambda: g.get_group(('foo', 'bar', 'baz')))
def test_get_group_empty_bins(self, observed):
d = pd.DataFrame([3, 1, 7, 6])
bins = [0, 5, 10, 15]
g = d.groupby(pd.cut(d[0], bins), observed=observed)
# TODO: should prob allow a str of Interval work as well
# IOW '(0, 5]'
result = g.get_group(pd.Interval(0, 5))
expected = DataFrame([3, 1], index=[0, 1])
assert_frame_equal(result, expected)
pytest.raises(KeyError, lambda: g.get_group(pd.Interval(10, 15)))
def test_get_group_grouped_by_tuple(self):
# GH 8121
df = DataFrame([[(1, ), (1, 2), (1, ), (1, 2)]], index=['ids']).T
gr = df.groupby('ids')
expected = DataFrame({'ids': [(1, ), (1, )]}, index=[0, 2])
result = gr.get_group((1, ))
assert_frame_equal(result, expected)
dt = pd.to_datetime(['2010-01-01', '2010-01-02', '2010-01-01',
'2010-01-02'])
df = DataFrame({'ids': [(x, ) for x in dt]})
gr = df.groupby('ids')
result = gr.get_group(('2010-01-01', ))
expected = DataFrame({'ids': [(dt[0], ), (dt[0], )]}, index=[0, 2])
assert_frame_equal(result, expected)
def test_groupby_with_empty(self):
index = pd.DatetimeIndex(())
data = ()
series = pd.Series(data, index)
grouper = pd.Grouper(freq='D')
grouped = series.groupby(grouper)
assert next(iter(grouped), None) is None
def test_groupby_with_single_column(self):
df = pd.DataFrame({'a': list('abssbab')})
tm.assert_frame_equal(df.groupby('a').get_group('a'), df.iloc[[0, 5]])
# GH 13530
exp = pd.DataFrame([], index=pd.Index(['a', 'b', 's'], name='a'))
tm.assert_frame_equal(df.groupby('a').count(), exp)
tm.assert_frame_equal(df.groupby('a').sum(), exp)
tm.assert_frame_equal(df.groupby('a').nth(1), exp)
def test_gb_key_len_equal_axis_len(self):
# GH16843
# test ensures that index and column keys are recognized correctly
# when number of keys equals axis length of groupby
df = pd.DataFrame([['foo', 'bar', 'B', 1],
['foo', 'bar', 'B', 2],
['foo', 'baz', 'C', 3]],
columns=['first', 'second', 'third', 'one'])
df = df.set_index(['first', 'second'])
df = df.groupby(['first', 'second', 'third']).size()
assert df.loc[('foo', 'bar', 'B')] == 2
assert df.loc[('foo', 'baz', 'C')] == 1
# groups & iteration
# --------------------------------
class TestIteration():
def test_groups(self, df):
grouped = df.groupby(['A'])
groups = grouped.groups
assert groups is grouped.groups # caching works
for k, v in compat.iteritems(grouped.groups):
assert (df.loc[v]['A'] == k).all()
grouped = df.groupby(['A', 'B'])
groups = grouped.groups
assert groups is grouped.groups # caching works
for k, v in compat.iteritems(grouped.groups):
assert (df.loc[v]['A'] == k[0]).all()
assert (df.loc[v]['B'] == k[1]).all()
def test_grouping_is_iterable(self, tsframe):
# this code path isn't used anywhere else
# not sure it's useful
grouped = tsframe.groupby([lambda x: x.weekday(), lambda x: x.year])
# test it works
for g in grouped.grouper.groupings[0]:
pass
def test_multi_iter(self):
s = Series(np.arange(6))
k1 = np.array(['a', 'a', 'a', 'b', 'b', 'b'])
k2 = np.array(['1', '2', '1', '2', '1', '2'])
grouped = s.groupby([k1, k2])
iterated = list(grouped)
expected = [('a', '1', s[[0, 2]]), ('a', '2', s[[1]]),
('b', '1', s[[4]]), ('b', '2', s[[3, 5]])]
for i, ((one, two), three) in enumerate(iterated):
e1, e2, e3 = expected[i]
assert e1 == one
assert e2 == two
assert_series_equal(three, e3)
def test_multi_iter_frame(self, three_group):
k1 = np.array(['b', 'b', 'b', 'a', 'a', 'a'])
k2 = np.array(['1', '2', '1', '2', '1', '2'])
df = DataFrame({'v1': np.random.randn(6),
'v2': np.random.randn(6),
'k1': k1, 'k2': k2},
index=['one', 'two', 'three', 'four', 'five', 'six'])
grouped = df.groupby(['k1', 'k2'])
# things get sorted!
iterated = list(grouped)
idx = df.index
expected = [('a', '1', df.loc[idx[[4]]]),
('a', '2', df.loc[idx[[3, 5]]]),
('b', '1', df.loc[idx[[0, 2]]]),
('b', '2', df.loc[idx[[1]]])]
for i, ((one, two), three) in enumerate(iterated):
e1, e2, e3 = expected[i]
assert e1 == one
assert e2 == two
assert_frame_equal(three, e3)
# don't iterate through groups with no data
df['k1'] = np.array(['b', 'b', 'b', 'a', 'a', 'a'])
df['k2'] = np.array(['1', '1', '1', '2', '2', '2'])
grouped = df.groupby(['k1', 'k2'])
groups = {}
for key, gp in grouped:
groups[key] = gp
assert len(groups) == 2
# axis = 1
three_levels = three_group.groupby(['A', 'B', 'C']).mean()
grouped = three_levels.T.groupby(axis=1, level=(1, 2))
for key, group in grouped:
pass
def test_multi_iter_panel(self):
with catch_warnings(record=True):
wp = tm.makePanel()
grouped = wp.groupby([lambda x: x.month, lambda x: x.weekday()],
axis=1)
for (month, wd), group in grouped:
exp_axis = [x
for x in wp.major_axis
if x.month == month and x.weekday() == wd]
expected = wp.reindex(major=exp_axis)
assert_panel_equal(group, expected)
def test_dictify(self, df):
dict(iter(df.groupby('A')))
dict(iter(df.groupby(['A', 'B'])))
dict(iter(df['C'].groupby(df['A'])))
dict(iter(df['C'].groupby([df['A'], df['B']])))
dict(iter(df.groupby('A')['C']))
dict(iter(df.groupby(['A', 'B'])['C']))
def test_groupby_with_small_elem(self):
# GH 8542
# length=2
df = pd.DataFrame({'event': ['start', 'start'],
'change': [1234, 5678]},
index=pd.DatetimeIndex(['2014-09-10', '2013-10-10']))
grouped = df.groupby([pd.Grouper(freq='M'), 'event'])
assert len(grouped.groups) == 2
assert grouped.ngroups == 2
assert (pd.Timestamp('2014-09-30'), 'start') in grouped.groups
assert (pd.Timestamp('2013-10-31'), 'start') in grouped.groups
res = grouped.get_group((pd.Timestamp('2014-09-30'), 'start'))
tm.assert_frame_equal(res, df.iloc[[0], :])
res = grouped.get_group((pd.Timestamp('2013-10-31'), 'start'))
tm.assert_frame_equal(res, df.iloc[[1], :])
df = pd.DataFrame({'event': ['start', 'start', 'start'],
'change': [1234, 5678, 9123]},
index=pd.DatetimeIndex(['2014-09-10', '2013-10-10',
'2014-09-15']))
grouped = df.groupby([pd.Grouper(freq='M'), 'event'])
assert len(grouped.groups) == 2
assert grouped.ngroups == 2
assert (pd.Timestamp('2014-09-30'), 'start') in grouped.groups
assert (pd.Timestamp('2013-10-31'), 'start') in grouped.groups
res = grouped.get_group((pd.Timestamp('2014-09-30'), 'start'))
tm.assert_frame_equal(res, df.iloc[[0, 2], :])
res = grouped.get_group((pd.Timestamp('2013-10-31'), 'start'))
tm.assert_frame_equal(res, df.iloc[[1], :])
# length=3
df = pd.DataFrame({'event': ['start', 'start', 'start'],
'change': [1234, 5678, 9123]},
index=pd.DatetimeIndex(['2014-09-10', '2013-10-10',
'2014-08-05']))
grouped = df.groupby([pd.Grouper(freq='M'), 'event'])
assert len(grouped.groups) == 3
assert grouped.ngroups == 3
assert (pd.Timestamp('2014-09-30'), 'start') in grouped.groups
assert (pd.Timestamp('2013-10-31'), 'start') in grouped.groups
assert (pd.Timestamp('2014-08-31'), 'start') in grouped.groups
res = grouped.get_group((pd.Timestamp('2014-09-30'), 'start'))
tm.assert_frame_equal(res, df.iloc[[0], :])
res = grouped.get_group((pd.Timestamp('2013-10-31'), 'start'))
tm.assert_frame_equal(res, df.iloc[[1], :])
res = grouped.get_group((pd.Timestamp('2014-08-31'), 'start'))
tm.assert_frame_equal(res, df.iloc[[2], :])
def test_grouping_string_repr(self):
# GH 13394
mi = MultiIndex.from_arrays([list("AAB"), list("aba")])
df = DataFrame([[1, 2, 3]], columns=mi)
gr = df.groupby(df[('A', 'a')])
result = gr.grouper.groupings[0].__repr__()
expected = "Grouping(('A', 'a'))"
assert result == expected