229 lines
7.4 KiB
Python
229 lines
7.4 KiB
Python
# -*- coding: utf-8 -*-
|
|
# pylint: disable-msg=E1101,W0612
|
|
|
|
from operator import methodcaller
|
|
|
|
import pytest
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from distutils.version import LooseVersion
|
|
from pandas import Series, date_range, MultiIndex
|
|
|
|
from pandas.compat import range
|
|
from pandas.util.testing import (assert_series_equal,
|
|
assert_almost_equal)
|
|
|
|
import pandas.util.testing as tm
|
|
import pandas.util._test_decorators as td
|
|
from .test_generic import Generic
|
|
|
|
try:
|
|
import xarray
|
|
_XARRAY_INSTALLED = True
|
|
except ImportError:
|
|
_XARRAY_INSTALLED = False
|
|
|
|
|
|
class TestSeries(Generic):
|
|
_typ = Series
|
|
_comparator = lambda self, x, y: assert_series_equal(x, y)
|
|
|
|
def setup_method(self):
|
|
self.ts = tm.makeTimeSeries() # Was at top level in test_series
|
|
self.ts.name = 'ts'
|
|
|
|
self.series = tm.makeStringSeries()
|
|
self.series.name = 'series'
|
|
|
|
def test_rename_mi(self):
|
|
s = Series([11, 21, 31],
|
|
index=MultiIndex.from_tuples(
|
|
[("A", x) for x in ["a", "B", "c"]]))
|
|
s.rename(str.lower)
|
|
|
|
def test_set_axis_name(self):
|
|
s = Series([1, 2, 3], index=['a', 'b', 'c'])
|
|
funcs = ['rename_axis', '_set_axis_name']
|
|
name = 'foo'
|
|
for func in funcs:
|
|
result = methodcaller(func, name)(s)
|
|
assert s.index.name is None
|
|
assert result.index.name == name
|
|
|
|
def test_set_axis_name_mi(self):
|
|
s = Series([11, 21, 31], index=MultiIndex.from_tuples(
|
|
[("A", x) for x in ["a", "B", "c"]],
|
|
names=['l1', 'l2'])
|
|
)
|
|
funcs = ['rename_axis', '_set_axis_name']
|
|
for func in funcs:
|
|
result = methodcaller(func, ['L1', 'L2'])(s)
|
|
assert s.index.name is None
|
|
assert s.index.names == ['l1', 'l2']
|
|
assert result.index.name is None
|
|
assert result.index.names, ['L1', 'L2']
|
|
|
|
def test_set_axis_name_raises(self):
|
|
s = pd.Series([1])
|
|
with pytest.raises(ValueError):
|
|
s._set_axis_name(name='a', axis=1)
|
|
|
|
def test_get_numeric_data_preserve_dtype(self):
|
|
|
|
# get the numeric data
|
|
o = Series([1, 2, 3])
|
|
result = o._get_numeric_data()
|
|
self._compare(result, o)
|
|
|
|
o = Series([1, '2', 3.])
|
|
result = o._get_numeric_data()
|
|
expected = Series([], dtype=object, index=pd.Index([], dtype=object))
|
|
self._compare(result, expected)
|
|
|
|
o = Series([True, False, True])
|
|
result = o._get_numeric_data()
|
|
self._compare(result, o)
|
|
|
|
o = Series([True, False, True])
|
|
result = o._get_bool_data()
|
|
self._compare(result, o)
|
|
|
|
o = Series(date_range('20130101', periods=3))
|
|
result = o._get_numeric_data()
|
|
expected = Series([], dtype='M8[ns]', index=pd.Index([], dtype=object))
|
|
self._compare(result, expected)
|
|
|
|
def test_nonzero_single_element(self):
|
|
|
|
# allow single item via bool method
|
|
s = Series([True])
|
|
assert s.bool()
|
|
|
|
s = Series([False])
|
|
assert not s.bool()
|
|
|
|
# single item nan to raise
|
|
for s in [Series([np.nan]), Series([pd.NaT]), Series([True]),
|
|
Series([False])]:
|
|
pytest.raises(ValueError, lambda: bool(s))
|
|
|
|
for s in [Series([np.nan]), Series([pd.NaT])]:
|
|
pytest.raises(ValueError, lambda: s.bool())
|
|
|
|
# multiple bool are still an error
|
|
for s in [Series([True, True]), Series([False, False])]:
|
|
pytest.raises(ValueError, lambda: bool(s))
|
|
pytest.raises(ValueError, lambda: s.bool())
|
|
|
|
# single non-bool are an error
|
|
for s in [Series([1]), Series([0]), Series(['a']), Series([0.0])]:
|
|
pytest.raises(ValueError, lambda: bool(s))
|
|
pytest.raises(ValueError, lambda: s.bool())
|
|
|
|
def test_metadata_propagation_indiv(self):
|
|
# check that the metadata matches up on the resulting ops
|
|
|
|
o = Series(range(3), range(3))
|
|
o.name = 'foo'
|
|
o2 = Series(range(3), range(3))
|
|
o2.name = 'bar'
|
|
|
|
result = o.T
|
|
self.check_metadata(o, result)
|
|
|
|
# resample
|
|
ts = Series(np.random.rand(1000),
|
|
index=date_range('20130101', periods=1000, freq='s'),
|
|
name='foo')
|
|
result = ts.resample('1T').mean()
|
|
self.check_metadata(ts, result)
|
|
|
|
result = ts.resample('1T').min()
|
|
self.check_metadata(ts, result)
|
|
|
|
result = ts.resample('1T').apply(lambda x: x.sum())
|
|
self.check_metadata(ts, result)
|
|
|
|
_metadata = Series._metadata
|
|
_finalize = Series.__finalize__
|
|
Series._metadata = ['name', 'filename']
|
|
o.filename = 'foo'
|
|
o2.filename = 'bar'
|
|
|
|
def finalize(self, other, method=None, **kwargs):
|
|
for name in self._metadata:
|
|
if method == 'concat' and name == 'filename':
|
|
value = '+'.join([getattr(
|
|
o, name) for o in other.objs if getattr(o, name, None)
|
|
])
|
|
object.__setattr__(self, name, value)
|
|
else:
|
|
object.__setattr__(self, name, getattr(other, name, None))
|
|
|
|
return self
|
|
|
|
Series.__finalize__ = finalize
|
|
|
|
result = pd.concat([o, o2])
|
|
assert result.filename == 'foo+bar'
|
|
assert result.name is None
|
|
|
|
# reset
|
|
Series._metadata = _metadata
|
|
Series.__finalize__ = _finalize
|
|
|
|
@pytest.mark.skipif(not _XARRAY_INSTALLED or _XARRAY_INSTALLED and
|
|
LooseVersion(xarray.__version__) <
|
|
LooseVersion('0.10.0'),
|
|
reason='xarray >= 0.10.0 required')
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
['FloatIndex', 'IntIndex',
|
|
'StringIndex', 'UnicodeIndex',
|
|
'DateIndex', 'PeriodIndex',
|
|
'TimedeltaIndex', 'CategoricalIndex'])
|
|
def test_to_xarray_index_types(self, index):
|
|
from xarray import DataArray
|
|
|
|
index = getattr(tm, 'make{}'.format(index))
|
|
s = Series(range(6), index=index(6))
|
|
s.index.name = 'foo'
|
|
result = s.to_xarray()
|
|
repr(result)
|
|
assert len(result) == 6
|
|
assert len(result.coords) == 1
|
|
assert_almost_equal(list(result.coords.keys()), ['foo'])
|
|
assert isinstance(result, DataArray)
|
|
|
|
# idempotency
|
|
assert_series_equal(result.to_series(), s,
|
|
check_index_type=False,
|
|
check_categorical=True)
|
|
|
|
@td.skip_if_no('xarray', min_version='0.7.0')
|
|
def test_to_xarray(self):
|
|
from xarray import DataArray
|
|
|
|
s = Series([])
|
|
s.index.name = 'foo'
|
|
result = s.to_xarray()
|
|
assert len(result) == 0
|
|
assert len(result.coords) == 1
|
|
assert_almost_equal(list(result.coords.keys()), ['foo'])
|
|
assert isinstance(result, DataArray)
|
|
|
|
s = Series(range(6))
|
|
s.index.name = 'foo'
|
|
s.index = pd.MultiIndex.from_product([['a', 'b'], range(3)],
|
|
names=['one', 'two'])
|
|
result = s.to_xarray()
|
|
assert len(result) == 2
|
|
assert_almost_equal(list(result.coords.keys()), ['one', 'two'])
|
|
assert isinstance(result, DataArray)
|
|
assert_series_equal(result.to_series(), s)
|
|
|
|
def test_valid_deprecated(self):
|
|
# GH18800
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
pd.Series([]).valid()
|