laywerrobot/lib/python3.6/site-packages/pandas/tests/frame/test_rank.py
2020-08-27 21:55:39 +02:00

299 lines
10 KiB
Python

# -*- coding: utf-8 -*-
import pytest
import numpy as np
import pandas.util.testing as tm
from distutils.version import LooseVersion
from datetime import timedelta, datetime
from numpy import nan
from pandas.util.testing import assert_frame_equal
from pandas.tests.frame.common import TestData
from pandas import Series, DataFrame
from pandas.compat import product
class TestRank(TestData):
s = Series([1, 3, 4, 2, nan, 2, 1, 5, nan, 3])
df = DataFrame({'A': s, 'B': s})
results = {
'average': np.array([1.5, 5.5, 7.0, 3.5, nan,
3.5, 1.5, 8.0, nan, 5.5]),
'min': np.array([1, 5, 7, 3, nan, 3, 1, 8, nan, 5]),
'max': np.array([2, 6, 7, 4, nan, 4, 2, 8, nan, 6]),
'first': np.array([1, 5, 7, 3, nan, 4, 2, 8, nan, 6]),
'dense': np.array([1, 3, 4, 2, nan, 2, 1, 5, nan, 3]),
}
def test_rank(self):
rankdata = pytest.importorskip('scipy.stats.rankdata')
self.frame['A'][::2] = np.nan
self.frame['B'][::3] = np.nan
self.frame['C'][::4] = np.nan
self.frame['D'][::5] = np.nan
ranks0 = self.frame.rank()
ranks1 = self.frame.rank(1)
mask = np.isnan(self.frame.values)
fvals = self.frame.fillna(np.inf).values
exp0 = np.apply_along_axis(rankdata, 0, fvals)
exp0[mask] = np.nan
exp1 = np.apply_along_axis(rankdata, 1, fvals)
exp1[mask] = np.nan
tm.assert_almost_equal(ranks0.values, exp0)
tm.assert_almost_equal(ranks1.values, exp1)
# integers
df = DataFrame(np.random.randint(0, 5, size=40).reshape((10, 4)))
result = df.rank()
exp = df.astype(float).rank()
tm.assert_frame_equal(result, exp)
result = df.rank(1)
exp = df.astype(float).rank(1)
tm.assert_frame_equal(result, exp)
def test_rank2(self):
df = DataFrame([[1, 3, 2], [1, 2, 3]])
expected = DataFrame([[1.0, 3.0, 2.0], [1, 2, 3]]) / 3.0
result = df.rank(1, pct=True)
tm.assert_frame_equal(result, expected)
df = DataFrame([[1, 3, 2], [1, 2, 3]])
expected = df.rank(0) / 2.0
result = df.rank(0, pct=True)
tm.assert_frame_equal(result, expected)
df = DataFrame([['b', 'c', 'a'], ['a', 'c', 'b']])
expected = DataFrame([[2.0, 3.0, 1.0], [1, 3, 2]])
result = df.rank(1, numeric_only=False)
tm.assert_frame_equal(result, expected)
expected = DataFrame([[2.0, 1.5, 1.0], [1, 1.5, 2]])
result = df.rank(0, numeric_only=False)
tm.assert_frame_equal(result, expected)
df = DataFrame([['b', np.nan, 'a'], ['a', 'c', 'b']])
expected = DataFrame([[2.0, nan, 1.0], [1.0, 3.0, 2.0]])
result = df.rank(1, numeric_only=False)
tm.assert_frame_equal(result, expected)
expected = DataFrame([[2.0, nan, 1.0], [1.0, 1.0, 2.0]])
result = df.rank(0, numeric_only=False)
tm.assert_frame_equal(result, expected)
# f7u12, this does not work without extensive workaround
data = [[datetime(2001, 1, 5), nan, datetime(2001, 1, 2)],
[datetime(2000, 1, 2), datetime(2000, 1, 3),
datetime(2000, 1, 1)]]
df = DataFrame(data)
# check the rank
expected = DataFrame([[2., nan, 1.],
[2., 3., 1.]])
result = df.rank(1, numeric_only=False, ascending=True)
tm.assert_frame_equal(result, expected)
expected = DataFrame([[1., nan, 2.],
[2., 1., 3.]])
result = df.rank(1, numeric_only=False, ascending=False)
tm.assert_frame_equal(result, expected)
# mixed-type frames
self.mixed_frame['datetime'] = datetime.now()
self.mixed_frame['timedelta'] = timedelta(days=1, seconds=1)
result = self.mixed_frame.rank(1)
expected = self.mixed_frame.rank(1, numeric_only=True)
tm.assert_frame_equal(result, expected)
df = DataFrame({"a": [1e-20, -5, 1e-20 + 1e-40, 10,
1e60, 1e80, 1e-30]})
exp = DataFrame({"a": [3.5, 1., 3.5, 5., 6., 7., 2.]})
tm.assert_frame_equal(df.rank(), exp)
def test_rank_na_option(self):
rankdata = pytest.importorskip('scipy.stats.rankdata')
self.frame['A'][::2] = np.nan
self.frame['B'][::3] = np.nan
self.frame['C'][::4] = np.nan
self.frame['D'][::5] = np.nan
# bottom
ranks0 = self.frame.rank(na_option='bottom')
ranks1 = self.frame.rank(1, na_option='bottom')
fvals = self.frame.fillna(np.inf).values
exp0 = np.apply_along_axis(rankdata, 0, fvals)
exp1 = np.apply_along_axis(rankdata, 1, fvals)
tm.assert_almost_equal(ranks0.values, exp0)
tm.assert_almost_equal(ranks1.values, exp1)
# top
ranks0 = self.frame.rank(na_option='top')
ranks1 = self.frame.rank(1, na_option='top')
fval0 = self.frame.fillna((self.frame.min() - 1).to_dict()).values
fval1 = self.frame.T
fval1 = fval1.fillna((fval1.min() - 1).to_dict()).T
fval1 = fval1.fillna(np.inf).values
exp0 = np.apply_along_axis(rankdata, 0, fval0)
exp1 = np.apply_along_axis(rankdata, 1, fval1)
tm.assert_almost_equal(ranks0.values, exp0)
tm.assert_almost_equal(ranks1.values, exp1)
# descending
# bottom
ranks0 = self.frame.rank(na_option='top', ascending=False)
ranks1 = self.frame.rank(1, na_option='top', ascending=False)
fvals = self.frame.fillna(np.inf).values
exp0 = np.apply_along_axis(rankdata, 0, -fvals)
exp1 = np.apply_along_axis(rankdata, 1, -fvals)
tm.assert_almost_equal(ranks0.values, exp0)
tm.assert_almost_equal(ranks1.values, exp1)
# descending
# top
ranks0 = self.frame.rank(na_option='bottom', ascending=False)
ranks1 = self.frame.rank(1, na_option='bottom', ascending=False)
fval0 = self.frame.fillna((self.frame.min() - 1).to_dict()).values
fval1 = self.frame.T
fval1 = fval1.fillna((fval1.min() - 1).to_dict()).T
fval1 = fval1.fillna(np.inf).values
exp0 = np.apply_along_axis(rankdata, 0, -fval0)
exp1 = np.apply_along_axis(rankdata, 1, -fval1)
tm.assert_numpy_array_equal(ranks0.values, exp0)
tm.assert_numpy_array_equal(ranks1.values, exp1)
def test_rank_axis(self):
# check if using axes' names gives the same result
df = DataFrame([[2, 1], [4, 3]])
tm.assert_frame_equal(df.rank(axis=0), df.rank(axis='index'))
tm.assert_frame_equal(df.rank(axis=1), df.rank(axis='columns'))
def test_rank_methods_frame(self):
pytest.importorskip('scipy.stats.special')
rankdata = pytest.importorskip('scipy.stats.rankdata')
import scipy
xs = np.random.randint(0, 21, (100, 26))
xs = (xs - 10.0) / 10.0
cols = [chr(ord('z') - i) for i in range(xs.shape[1])]
for vals in [xs, xs + 1e6, xs * 1e-6]:
df = DataFrame(vals, columns=cols)
for ax in [0, 1]:
for m in ['average', 'min', 'max', 'first', 'dense']:
result = df.rank(axis=ax, method=m)
sprank = np.apply_along_axis(
rankdata, ax, vals,
m if m != 'first' else 'ordinal')
sprank = sprank.astype(np.float64)
expected = DataFrame(sprank, columns=cols)
if (LooseVersion(scipy.__version__) >=
LooseVersion('0.17.0')):
expected = expected.astype('float64')
tm.assert_frame_equal(result, expected)
def test_rank_descending(self):
dtypes = ['O', 'f8', 'i8']
for dtype, method in product(dtypes, self.results):
if 'i' in dtype:
df = self.df.dropna()
else:
df = self.df.astype(dtype)
res = df.rank(ascending=False)
expected = (df.max() - df).rank()
assert_frame_equal(res, expected)
if method == 'first' and dtype == 'O':
continue
expected = (df.max() - df).rank(method=method)
if dtype != 'O':
res2 = df.rank(method=method, ascending=False,
numeric_only=True)
assert_frame_equal(res2, expected)
res3 = df.rank(method=method, ascending=False,
numeric_only=False)
assert_frame_equal(res3, expected)
def test_rank_2d_tie_methods(self):
df = self.df
def _check2d(df, expected, method='average', axis=0):
exp_df = DataFrame({'A': expected, 'B': expected})
if axis == 1:
df = df.T
exp_df = exp_df.T
result = df.rank(method=method, axis=axis)
assert_frame_equal(result, exp_df)
dtypes = [None, object]
disabled = set([(object, 'first')])
results = self.results
for method, axis, dtype in product(results, [0, 1], dtypes):
if (dtype, method) in disabled:
continue
frame = df if dtype is None else df.astype(dtype)
_check2d(frame, results[method], method=method, axis=axis)
@pytest.mark.parametrize(
"method,exp", [("dense",
[[1., 1., 1.],
[1., 0.5, 2. / 3],
[1., 0.5, 1. / 3]]),
("min",
[[1. / 3, 1., 1.],
[1. / 3, 1. / 3, 2. / 3],
[1. / 3, 1. / 3, 1. / 3]]),
("max",
[[1., 1., 1.],
[1., 2. / 3, 2. / 3],
[1., 2. / 3, 1. / 3]]),
("average",
[[2. / 3, 1., 1.],
[2. / 3, 0.5, 2. / 3],
[2. / 3, 0.5, 1. / 3]]),
("first",
[[1. / 3, 1., 1.],
[2. / 3, 1. / 3, 2. / 3],
[3. / 3, 2. / 3, 1. / 3]])])
def test_rank_pct_true(method, exp):
# see gh-15630.
df = DataFrame([[2012, 66, 3], [2012, 65, 2], [2012, 65, 1]])
result = df.rank(method=method, pct=True)
expected = DataFrame(exp)
tm.assert_frame_equal(result, expected)