140 lines
4.5 KiB
Python
140 lines
4.5 KiB
Python
import numpy as np
|
|
|
|
from pandas import compat
|
|
from pandas.util._decorators import cache_readonly
|
|
import pandas.util.testing as tm
|
|
import pandas as pd
|
|
|
|
_seriesd = tm.getSeriesData()
|
|
_tsd = tm.getTimeSeriesData()
|
|
|
|
_frame = pd.DataFrame(_seriesd)
|
|
_frame2 = pd.DataFrame(_seriesd, columns=['D', 'C', 'B', 'A'])
|
|
_intframe = pd.DataFrame({k: v.astype(int)
|
|
for k, v in compat.iteritems(_seriesd)})
|
|
|
|
_tsframe = pd.DataFrame(_tsd)
|
|
|
|
_mixed_frame = _frame.copy()
|
|
_mixed_frame['foo'] = 'bar'
|
|
|
|
|
|
class TestData(object):
|
|
|
|
@cache_readonly
|
|
def frame(self):
|
|
return _frame.copy()
|
|
|
|
@cache_readonly
|
|
def frame2(self):
|
|
return _frame2.copy()
|
|
|
|
@cache_readonly
|
|
def intframe(self):
|
|
# force these all to int64 to avoid platform testing issues
|
|
return pd.DataFrame({c: s for c, s in compat.iteritems(_intframe)},
|
|
dtype=np.int64)
|
|
|
|
@cache_readonly
|
|
def tsframe(self):
|
|
return _tsframe.copy()
|
|
|
|
@cache_readonly
|
|
def mixed_frame(self):
|
|
return _mixed_frame.copy()
|
|
|
|
@cache_readonly
|
|
def mixed_float(self):
|
|
return pd.DataFrame({'A': _frame['A'].copy().astype('float32'),
|
|
'B': _frame['B'].copy().astype('float32'),
|
|
'C': _frame['C'].copy().astype('float16'),
|
|
'D': _frame['D'].copy().astype('float64')})
|
|
|
|
@cache_readonly
|
|
def mixed_float2(self):
|
|
return pd.DataFrame({'A': _frame2['A'].copy().astype('float32'),
|
|
'B': _frame2['B'].copy().astype('float32'),
|
|
'C': _frame2['C'].copy().astype('float16'),
|
|
'D': _frame2['D'].copy().astype('float64')})
|
|
|
|
@cache_readonly
|
|
def mixed_int(self):
|
|
return pd.DataFrame({'A': _intframe['A'].copy().astype('int32'),
|
|
'B': np.ones(len(_intframe['B']), dtype='uint64'),
|
|
'C': _intframe['C'].copy().astype('uint8'),
|
|
'D': _intframe['D'].copy().astype('int64')})
|
|
|
|
@cache_readonly
|
|
def all_mixed(self):
|
|
return pd.DataFrame({'a': 1., 'b': 2, 'c': 'foo',
|
|
'float32': np.array([1.] * 10, dtype='float32'),
|
|
'int32': np.array([1] * 10, dtype='int32')},
|
|
index=np.arange(10))
|
|
|
|
@cache_readonly
|
|
def tzframe(self):
|
|
result = pd.DataFrame({'A': pd.date_range('20130101', periods=3),
|
|
'B': pd.date_range('20130101', periods=3,
|
|
tz='US/Eastern'),
|
|
'C': pd.date_range('20130101', periods=3,
|
|
tz='CET')})
|
|
result.iloc[1, 1] = pd.NaT
|
|
result.iloc[1, 2] = pd.NaT
|
|
return result
|
|
|
|
@cache_readonly
|
|
def empty(self):
|
|
return pd.DataFrame({})
|
|
|
|
@cache_readonly
|
|
def ts1(self):
|
|
return tm.makeTimeSeries(nper=30)
|
|
|
|
@cache_readonly
|
|
def ts2(self):
|
|
return tm.makeTimeSeries(nper=30)[5:]
|
|
|
|
@cache_readonly
|
|
def simple(self):
|
|
arr = np.array([[1., 2., 3.],
|
|
[4., 5., 6.],
|
|
[7., 8., 9.]])
|
|
|
|
return pd.DataFrame(arr, columns=['one', 'two', 'three'],
|
|
index=['a', 'b', 'c'])
|
|
|
|
# self.ts3 = tm.makeTimeSeries()[-5:]
|
|
# self.ts4 = tm.makeTimeSeries()[1:-1]
|
|
|
|
|
|
def _check_mixed_float(df, dtype=None):
|
|
# float16 are most likely to be upcasted to float32
|
|
dtypes = dict(A='float32', B='float32', C='float16', D='float64')
|
|
if isinstance(dtype, compat.string_types):
|
|
dtypes = {k: dtype for k, v in dtypes.items()}
|
|
elif isinstance(dtype, dict):
|
|
dtypes.update(dtype)
|
|
if dtypes.get('A'):
|
|
assert(df.dtypes['A'] == dtypes['A'])
|
|
if dtypes.get('B'):
|
|
assert(df.dtypes['B'] == dtypes['B'])
|
|
if dtypes.get('C'):
|
|
assert(df.dtypes['C'] == dtypes['C'])
|
|
if dtypes.get('D'):
|
|
assert(df.dtypes['D'] == dtypes['D'])
|
|
|
|
|
|
def _check_mixed_int(df, dtype=None):
|
|
dtypes = dict(A='int32', B='uint64', C='uint8', D='int64')
|
|
if isinstance(dtype, compat.string_types):
|
|
dtypes = {k: dtype for k, v in dtypes.items()}
|
|
elif isinstance(dtype, dict):
|
|
dtypes.update(dtype)
|
|
if dtypes.get('A'):
|
|
assert(df.dtypes['A'] == dtypes['A'])
|
|
if dtypes.get('B'):
|
|
assert(df.dtypes['B'] == dtypes['B'])
|
|
if dtypes.get('C'):
|
|
assert(df.dtypes['C'] == dtypes['C'])
|
|
if dtypes.get('D'):
|
|
assert(df.dtypes['D'] == dtypes['D'])
|