laywerrobot/lib/python3.6/site-packages/pandas/plotting/_tools.py
2020-08-27 21:55:39 +02:00

383 lines
13 KiB
Python

# being a bit too dynamic
# pylint: disable=E1101
from __future__ import division
import warnings
from math import ceil
import numpy as np
from pandas.core.dtypes.common import is_list_like
from pandas.core.dtypes.generic import ABCSeries
from pandas.core.index import Index
from pandas.compat import range
def format_date_labels(ax, rot):
# mini version of autofmt_xdate
try:
for label in ax.get_xticklabels():
label.set_ha('right')
label.set_rotation(rot)
fig = ax.get_figure()
fig.subplots_adjust(bottom=0.2)
except Exception: # pragma: no cover
pass
def table(ax, data, rowLabels=None, colLabels=None, **kwargs):
"""
Helper function to convert DataFrame and Series to matplotlib.table
Parameters
----------
`ax`: Matplotlib axes object
`data`: DataFrame or Series
data for table contents
`kwargs`: keywords, optional
keyword arguments which passed to matplotlib.table.table.
If `rowLabels` or `colLabels` is not specified, data index or column
name will be used.
Returns
-------
matplotlib table object
"""
from pandas import DataFrame
if isinstance(data, ABCSeries):
data = DataFrame(data, columns=[data.name])
elif isinstance(data, DataFrame):
pass
else:
raise ValueError('Input data must be DataFrame or Series')
if rowLabels is None:
rowLabels = data.index
if colLabels is None:
colLabels = data.columns
cellText = data.values
import matplotlib.table
table = matplotlib.table.table(ax, cellText=cellText,
rowLabels=rowLabels,
colLabels=colLabels, **kwargs)
return table
def _get_layout(nplots, layout=None, layout_type='box'):
if layout is not None:
if not isinstance(layout, (tuple, list)) or len(layout) != 2:
raise ValueError('Layout must be a tuple of (rows, columns)')
nrows, ncols = layout
# Python 2 compat
ceil_ = lambda x: int(ceil(x))
if nrows == -1 and ncols > 0:
layout = nrows, ncols = (ceil_(float(nplots) / ncols), ncols)
elif ncols == -1 and nrows > 0:
layout = nrows, ncols = (nrows, ceil_(float(nplots) / nrows))
elif ncols <= 0 and nrows <= 0:
msg = "At least one dimension of layout must be positive"
raise ValueError(msg)
if nrows * ncols < nplots:
raise ValueError('Layout of {nrows}x{ncols} must be larger '
'than required size {nplots}'.format(
nrows=nrows, ncols=ncols, nplots=nplots))
return layout
if layout_type == 'single':
return (1, 1)
elif layout_type == 'horizontal':
return (1, nplots)
elif layout_type == 'vertical':
return (nplots, 1)
layouts = {1: (1, 1), 2: (1, 2), 3: (2, 2), 4: (2, 2)}
try:
return layouts[nplots]
except KeyError:
k = 1
while k ** 2 < nplots:
k += 1
if (k - 1) * k >= nplots:
return k, (k - 1)
else:
return k, k
# copied from matplotlib/pyplot.py and modified for pandas.plotting
def _subplots(naxes=None, sharex=False, sharey=False, squeeze=True,
subplot_kw=None, ax=None, layout=None, layout_type='box',
**fig_kw):
"""Create a figure with a set of subplots already made.
This utility wrapper makes it convenient to create common layouts of
subplots, including the enclosing figure object, in a single call.
Keyword arguments:
naxes : int
Number of required axes. Exceeded axes are set invisible. Default is
nrows * ncols.
sharex : bool
If True, the X axis will be shared amongst all subplots.
sharey : bool
If True, the Y axis will be shared amongst all subplots.
squeeze : bool
If True, extra dimensions are squeezed out from the returned axis object:
- if only one subplot is constructed (nrows=ncols=1), the resulting
single Axis object is returned as a scalar.
- for Nx1 or 1xN subplots, the returned object is a 1-d numpy object
array of Axis objects are returned as numpy 1-d arrays.
- for NxM subplots with N>1 and M>1 are returned as a 2d array.
If False, no squeezing is done: the returned axis object is always
a 2-d array containing Axis instances, even if it ends up being 1x1.
subplot_kw : dict
Dict with keywords passed to the add_subplot() call used to create each
subplots.
ax : Matplotlib axis object, optional
layout : tuple
Number of rows and columns of the subplot grid.
If not specified, calculated from naxes and layout_type
layout_type : {'box', 'horziontal', 'vertical'}, default 'box'
Specify how to layout the subplot grid.
fig_kw : Other keyword arguments to be passed to the figure() call.
Note that all keywords not recognized above will be
automatically included here.
Returns:
fig, ax : tuple
- fig is the Matplotlib Figure object
- ax can be either a single axis object or an array of axis objects if
more than one subplot was created. The dimensions of the resulting array
can be controlled with the squeeze keyword, see above.
**Examples:**
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)
# Just a figure and one subplot
f, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')
# Two subplots, unpack the output array immediately
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title('Sharing Y axis')
ax2.scatter(x, y)
# Four polar axes
plt.subplots(2, 2, subplot_kw=dict(polar=True))
"""
import matplotlib.pyplot as plt
if subplot_kw is None:
subplot_kw = {}
if ax is None:
fig = plt.figure(**fig_kw)
else:
if is_list_like(ax):
ax = _flatten(ax)
if layout is not None:
warnings.warn("When passing multiple axes, layout keyword is "
"ignored", UserWarning)
if sharex or sharey:
warnings.warn("When passing multiple axes, sharex and sharey "
"are ignored. These settings must be specified "
"when creating axes", UserWarning,
stacklevel=4)
if len(ax) == naxes:
fig = ax[0].get_figure()
return fig, ax
else:
raise ValueError("The number of passed axes must be {0}, the "
"same as the output plot".format(naxes))
fig = ax.get_figure()
# if ax is passed and a number of subplots is 1, return ax as it is
if naxes == 1:
if squeeze:
return fig, ax
else:
return fig, _flatten(ax)
else:
warnings.warn("To output multiple subplots, the figure containing "
"the passed axes is being cleared", UserWarning,
stacklevel=4)
fig.clear()
nrows, ncols = _get_layout(naxes, layout=layout, layout_type=layout_type)
nplots = nrows * ncols
# Create empty object array to hold all axes. It's easiest to make it 1-d
# so we can just append subplots upon creation, and then
axarr = np.empty(nplots, dtype=object)
# Create first subplot separately, so we can share it if requested
ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw)
if sharex:
subplot_kw['sharex'] = ax0
if sharey:
subplot_kw['sharey'] = ax0
axarr[0] = ax0
# Note off-by-one counting because add_subplot uses the MATLAB 1-based
# convention.
for i in range(1, nplots):
kwds = subplot_kw.copy()
# Set sharex and sharey to None for blank/dummy axes, these can
# interfere with proper axis limits on the visible axes if
# they share axes e.g. issue #7528
if i >= naxes:
kwds['sharex'] = None
kwds['sharey'] = None
ax = fig.add_subplot(nrows, ncols, i + 1, **kwds)
axarr[i] = ax
if naxes != nplots:
for ax in axarr[naxes:]:
ax.set_visible(False)
_handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey)
if squeeze:
# Reshape the array to have the final desired dimension (nrow,ncol),
# though discarding unneeded dimensions that equal 1. If we only have
# one subplot, just return it instead of a 1-element array.
if nplots == 1:
axes = axarr[0]
else:
axes = axarr.reshape(nrows, ncols).squeeze()
else:
# returned axis array will be always 2-d, even if nrows=ncols=1
axes = axarr.reshape(nrows, ncols)
return fig, axes
def _remove_labels_from_axis(axis):
for t in axis.get_majorticklabels():
t.set_visible(False)
try:
# set_visible will not be effective if
# minor axis has NullLocator and NullFormattor (default)
import matplotlib.ticker as ticker
if isinstance(axis.get_minor_locator(), ticker.NullLocator):
axis.set_minor_locator(ticker.AutoLocator())
if isinstance(axis.get_minor_formatter(), ticker.NullFormatter):
axis.set_minor_formatter(ticker.FormatStrFormatter(''))
for t in axis.get_minorticklabels():
t.set_visible(False)
except Exception: # pragma no cover
raise
axis.get_label().set_visible(False)
def _handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey):
if nplots > 1:
if nrows > 1:
try:
# first find out the ax layout,
# so that we can correctly handle 'gaps"
layout = np.zeros((nrows + 1, ncols + 1), dtype=np.bool)
for ax in axarr:
layout[ax.rowNum, ax.colNum] = ax.get_visible()
for ax in axarr:
# only the last row of subplots should get x labels -> all
# other off layout handles the case that the subplot is
# the last in the column, because below is no subplot/gap.
if not layout[ax.rowNum + 1, ax.colNum]:
continue
if sharex or len(ax.get_shared_x_axes()
.get_siblings(ax)) > 1:
_remove_labels_from_axis(ax.xaxis)
except IndexError:
# if gridspec is used, ax.rowNum and ax.colNum may different
# from layout shape. in this case, use last_row logic
for ax in axarr:
if ax.is_last_row():
continue
if sharex or len(ax.get_shared_x_axes()
.get_siblings(ax)) > 1:
_remove_labels_from_axis(ax.xaxis)
if ncols > 1:
for ax in axarr:
# only the first column should get y labels -> set all other to
# off as we only have labels in the first column and we always
# have a subplot there, we can skip the layout test
if ax.is_first_col():
continue
if sharey or len(ax.get_shared_y_axes().get_siblings(ax)) > 1:
_remove_labels_from_axis(ax.yaxis)
def _flatten(axes):
if not is_list_like(axes):
return np.array([axes])
elif isinstance(axes, (np.ndarray, Index)):
return axes.ravel()
return np.array(axes)
def _get_all_lines(ax):
lines = ax.get_lines()
if hasattr(ax, 'right_ax'):
lines += ax.right_ax.get_lines()
if hasattr(ax, 'left_ax'):
lines += ax.left_ax.get_lines()
return lines
def _get_xlim(lines):
left, right = np.inf, -np.inf
for l in lines:
x = l.get_xdata(orig=False)
left = min(np.nanmin(x), left)
right = max(np.nanmax(x), right)
return left, right
def _set_ticks_props(axes, xlabelsize=None, xrot=None,
ylabelsize=None, yrot=None):
import matplotlib.pyplot as plt
for ax in _flatten(axes):
if xlabelsize is not None:
plt.setp(ax.get_xticklabels(), fontsize=xlabelsize)
if xrot is not None:
plt.setp(ax.get_xticklabels(), rotation=xrot)
if ylabelsize is not None:
plt.setp(ax.get_yticklabels(), fontsize=ylabelsize)
if yrot is not None:
plt.setp(ax.get_yticklabels(), rotation=yrot)
return axes