80 lines
2.4 KiB
Python
80 lines
2.4 KiB
Python
from __future__ import division, absolute_import, print_function
|
|
|
|
import warnings
|
|
|
|
import numpy as np
|
|
from numpy.testing import (
|
|
assert_, assert_array_equal, assert_allclose, run_module_suite,
|
|
suppress_warnings
|
|
)
|
|
|
|
|
|
class TestRegression(object):
|
|
def test_masked_array_create(self):
|
|
# Ticket #17
|
|
x = np.ma.masked_array([0, 1, 2, 3, 0, 4, 5, 6],
|
|
mask=[0, 0, 0, 1, 1, 1, 0, 0])
|
|
assert_array_equal(np.ma.nonzero(x), [[1, 2, 6, 7]])
|
|
|
|
def test_masked_array(self):
|
|
# Ticket #61
|
|
np.ma.array(1, mask=[1])
|
|
|
|
def test_mem_masked_where(self):
|
|
# Ticket #62
|
|
from numpy.ma import masked_where, MaskType
|
|
a = np.zeros((1, 1))
|
|
b = np.zeros(a.shape, MaskType)
|
|
c = masked_where(b, a)
|
|
a-c
|
|
|
|
def test_masked_array_multiply(self):
|
|
# Ticket #254
|
|
a = np.ma.zeros((4, 1))
|
|
a[2, 0] = np.ma.masked
|
|
b = np.zeros((4, 2))
|
|
a*b
|
|
b*a
|
|
|
|
def test_masked_array_repeat(self):
|
|
# Ticket #271
|
|
np.ma.array([1], mask=False).repeat(10)
|
|
|
|
def test_masked_array_repr_unicode(self):
|
|
# Ticket #1256
|
|
repr(np.ma.array(u"Unicode"))
|
|
|
|
def test_atleast_2d(self):
|
|
# Ticket #1559
|
|
a = np.ma.masked_array([0.0, 1.2, 3.5], mask=[False, True, False])
|
|
b = np.atleast_2d(a)
|
|
assert_(a.mask.ndim == 1)
|
|
assert_(b.mask.ndim == 2)
|
|
|
|
def test_set_fill_value_unicode_py3(self):
|
|
# Ticket #2733
|
|
a = np.ma.masked_array(['a', 'b', 'c'], mask=[1, 0, 0])
|
|
a.fill_value = 'X'
|
|
assert_(a.fill_value == 'X')
|
|
|
|
def test_var_sets_maskedarray_scalar(self):
|
|
# Issue gh-2757
|
|
a = np.ma.array(np.arange(5), mask=True)
|
|
mout = np.ma.array(-1, dtype=float)
|
|
a.var(out=mout)
|
|
assert_(mout._data == 0)
|
|
|
|
def test_ddof_corrcoef(self):
|
|
# See gh-3336
|
|
x = np.ma.masked_equal([1, 2, 3, 4, 5], 4)
|
|
y = np.array([2, 2.5, 3.1, 3, 5])
|
|
# this test can be removed after deprecation.
|
|
with suppress_warnings() as sup:
|
|
sup.filter(DeprecationWarning, "bias and ddof have no effect")
|
|
r0 = np.ma.corrcoef(x, y, ddof=0)
|
|
r1 = np.ma.corrcoef(x, y, ddof=1)
|
|
# ddof should not have an effect (it gets cancelled out)
|
|
assert_allclose(r0.data, r1.data)
|
|
|
|
if __name__ == "__main__":
|
|
run_module_suite()
|