laywerrobot/lib/python3.6/site-packages/nltk/test/unit/test_tokenize.py
2020-08-27 21:55:39 +02:00

168 lines
7.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
"""
Unit tests for nltk.tokenize.
See also nltk/test/tokenize.doctest
"""
from __future__ import unicode_literals
from nltk.tokenize import TweetTokenizer, StanfordSegmenter, TreebankWordTokenizer
from nose import SkipTest
import unittest
import os
class TestTokenize(unittest.TestCase):
def test_tweet_tokenizer(self):
"""
Test TweetTokenizer using words with special and accented characters.
"""
tokenizer = TweetTokenizer(strip_handles=True, reduce_len=True)
s9 = "@myke: Let's test these words: resumé España München français"
tokens = tokenizer.tokenize(s9)
expected = [':', "Let's", 'test', 'these', 'words', ':', 'resumé',
'España', 'München', 'français']
self.assertEqual(tokens, expected)
def test_stanford_segmenter_arabic(self):
"""
Test the Stanford Word Segmenter for Arabic (default config)
"""
try:
seg = StanfordSegmenter()
seg.default_config('ar')
sent = u'يبحث علم الحاسوب استخدام الحوسبة بجميع اشكالها لحل المشكلات'
segmented_sent = seg.segment(sent.split())
assert segmented_sent.split() == ['يبحث', 'علم', 'الحاسوب', 'استخدام',
'الحوسبة', 'ب', 'جميع', 'اشكال',
'ها', 'ل', 'حل', 'المشكلات']
except LookupError as e:
raise SkipTest(str(e))
def test_stanford_segmenter_chinese(self):
"""
Test the Stanford Word Segmenter for Chinese (default config)
"""
try:
seg = StanfordSegmenter()
seg.default_config('zh')
sent = u"这是斯坦福中文分词器测试"
segmented_sent = seg.segment(sent.split())
assert segmented_sent.split() == ['', '', '斯坦福',
'中文', '分词器', '测试']
except LookupError as e:
raise SkipTest(str(e))
def test_phone_tokenizer(self):
"""
Test a string that resembles a phone number but contains a newline
"""
# Should be recognized as a phone number, albeit one with multiple spaces
tokenizer = TweetTokenizer()
test1 = "(393) 928 -3010"
expected = ['(393) 928 -3010']
result = tokenizer.tokenize(test1)
self.assertEqual(result, expected)
# Due to newline, first three elements aren't part of a phone number;
# fourth is
test2= "(393)\n928 -3010"
expected = ['(', '393', ')', "928 -3010"]
result = tokenizer.tokenize(test2)
self.assertEqual(result, expected)
def test_remove_handle(self):
"""
Test remove_handle() from casual.py with specially crafted edge cases
"""
tokenizer = TweetTokenizer(strip_handles=True)
# Simple example. Handles with just numbers should be allowed
test1 = "@twitter hello @twi_tter_. hi @12345 @123news"
expected = ['hello', '.', 'hi']
result = tokenizer.tokenize(test1)
self.assertEqual(result, expected)
# Handles are allowed to follow any of the following characters
test2 = "@n`@n~@n(@n)@n-@n=@n+@n\\@n|@n[@n]@n{@n}@n;@n:@n'@n\"@n/@n?@n.@n,@n<@n>@n @n\n@n ñ@n.ü@n.ç@n."
expected = ['`', '~', '(', ')', '-', '=', '+', '\\', '|', '[', ']', '{', '}', ';', ':', "'", '"', '/', '?', '.', ',', '<', '>', 'ñ', '.', 'ü', '.', 'ç', '.']
result = tokenizer.tokenize(test2)
self.assertEqual(result, expected)
# Handles are NOT allowed to follow any of the following characters
test3 = "a@n j@n z@n A@n L@n Z@n 1@n 4@n 7@n 9@n 0@n _@n !@n @@n #@n $@n %@n &@n *@n"
expected = ['a', '@n', 'j', '@n', 'z', '@n', 'A', '@n', 'L', '@n', 'Z', '@n', '1', '@n', '4', '@n', '7', '@n', '9', '@n', '0', '@n', '_', '@n', '!', '@n', '@', '@n', '#', '@n', '$', '@n', '%', '@n', '&', '@n', '*', '@n']
result = tokenizer.tokenize(test3)
self.assertEqual(result, expected)
# Handles are allowed to precede the following characters
test4 = "@n!a @n#a @n$a @n%a @n&a @n*a"
expected = ['!', 'a', '#', 'a', '$', 'a', '%', 'a', '&', 'a', '*', 'a']
result = tokenizer.tokenize(test4)
self.assertEqual(result, expected)
# Tests interactions with special symbols and multiple @
test5 = "@n!@n @n#@n @n$@n @n%@n @n&@n @n*@n @n@n @@n @n@@n @n_@n @n7@n @nj@n"
expected = ['!', '@n', '#', '@n', '$', '@n', '%', '@n', '&', '@n', '*', '@n', '@n', '@n', '@', '@n', '@n', '@', '@n', '@n_', '@n', '@n7', '@n', '@nj', '@n']
result = tokenizer.tokenize(test5)
self.assertEqual(result, expected)
# Tests that handles can have a max length of 20
test6 = "@abcdefghijklmnopqrstuvwxyz @abcdefghijklmnopqrst1234 @abcdefghijklmnopqrst_ @abcdefghijklmnopqrstendofhandle"
expected = ['uvwxyz', '1234', '_', 'endofhandle']
result = tokenizer.tokenize(test6)
self.assertEqual(result, expected)
# Edge case where an @ comes directly after a long handle
test7 = "@abcdefghijklmnopqrstu@abcde @abcdefghijklmnopqrst@abcde @abcdefghijklmnopqrst_@abcde @abcdefghijklmnopqrst5@abcde"
expected = ['u', '@abcde', '@abcdefghijklmnopqrst', '@abcde', '_', '@abcde', '5', '@abcde']
result = tokenizer.tokenize(test7)
self.assertEqual(result, expected)
def test_treebank_span_tokenizer(self):
"""
Test TreebankWordTokenizer.span_tokenize function
"""
tokenizer = TreebankWordTokenizer()
# Test case in the docstring
test1 = "Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks)."
expected = [
(0, 4), (5, 12), (13, 17), (18, 19), (19, 23),
(24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38),
(40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59),
(60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78)
]
result = list(tokenizer.span_tokenize(test1))
self.assertEqual(result, expected)
# Test case with double quotation
test2 = "The DUP is similar to the \"religious right\" in the United States and takes a hardline stance on social issues"
expected = [
(0, 3), (4, 7), (8, 10), (11, 18), (19, 21), (22, 25), (26, 27),
(27, 36), (37, 42), (42, 43), (44, 46), (47, 50), (51, 57), (58, 64),
(65, 68), (69, 74), (75, 76), (77, 85), (86, 92), (93, 95), (96, 102),
(103, 109)
]
result = list(tokenizer.span_tokenize(test2))
self.assertEqual(result, expected)
# Test case with double qoutation as well as converted quotations
test3 = "The DUP is similar to the \"religious right\" in the United States and takes a ``hardline'' stance on social issues"
expected = [
(0, 3), (4, 7), (8, 10), (11, 18), (19, 21), (22, 25), (26, 27),
(27, 36), (37, 42), (42, 43), (44, 46), (47, 50), (51, 57), (58, 64),
(65, 68), (69, 74), (75, 76), (77, 79), (79, 87), (87, 89), (90, 96),
(97, 99), (100, 106), (107, 113)
]
result = list(tokenizer.span_tokenize(test3))
self.assertEqual(result, expected)