laywerrobot/lib/python3.6/site-packages/nltk/sem/evaluate.py
2020-08-27 21:55:39 +02:00

790 lines
25 KiB
Python

# Natural Language Toolkit: Models for first-order languages with lambda
#
# Copyright (C) 2001-2018 NLTK Project
# Author: Ewan Klein <ewan@inf.ed.ac.uk>,
# URL: <http://nltk.sourceforge.net>
# For license information, see LICENSE.TXT
#TODO:
#- fix tracing
#- fix iterator-based approach to existentials
"""
This module provides data structures for representing first-order
models.
"""
from __future__ import print_function, unicode_literals
from pprint import pformat
import inspect
import textwrap
import re
import sys
from six import string_types
from nltk.decorators import decorator # this used in code that is commented out
from nltk.compat import python_2_unicode_compatible
from nltk.sem.logic import (AbstractVariableExpression, AllExpression, Expression,
AndExpression, ApplicationExpression, EqualityExpression,
ExistsExpression, IffExpression, ImpExpression,
IndividualVariableExpression, LambdaExpression,
NegatedExpression, OrExpression,
Variable, is_indvar)
class Error(Exception): pass
class Undefined(Error): pass
def trace(f, *args, **kw):
if sys.version_info[0] >= 3:
argspec = inspect.getfullargspec(f)
else:
argspec = inspect.getargspec(f)
d = dict(zip(argspec[0], args))
if d.pop('trace', None):
print()
for item in d.items():
print("%s => %s" % item)
return f(*args, **kw)
def is_rel(s):
"""
Check whether a set represents a relation (of any arity).
:param s: a set containing tuples of str elements
:type s: set
:rtype: bool
"""
# we have the empty relation, i.e. set()
if len(s) == 0:
return True
# all the elements are tuples of the same length
elif all(isinstance(el, tuple) for el in s) and len(max(s))==len(min(s)):
return True
else:
raise ValueError("Set %r contains sequences of different lengths" % s)
def set2rel(s):
"""
Convert a set containing individuals (strings or numbers) into a set of
unary tuples. Any tuples of strings already in the set are passed through
unchanged.
For example:
- set(['a', 'b']) => set([('a',), ('b',)])
- set([3, 27]) => set([('3',), ('27',)])
:type s: set
:rtype: set of tuple of str
"""
new = set()
for elem in s:
if isinstance(elem, string_types):
new.add((elem,))
elif isinstance(elem, int):
new.add((str(elem,)))
else:
new.add(elem)
return new
def arity(rel):
"""
Check the arity of a relation.
:type rel: set of tuples
:rtype: int of tuple of str
"""
if len(rel) == 0:
return 0
return len(list(rel)[0])
@python_2_unicode_compatible
class Valuation(dict):
"""
A dictionary which represents a model-theoretic Valuation of non-logical constants.
Keys are strings representing the constants to be interpreted, and values correspond
to individuals (represented as strings) and n-ary relations (represented as sets of tuples
of strings).
An instance of ``Valuation`` will raise a KeyError exception (i.e.,
just behave like a standard dictionary) if indexed with an expression that
is not in its list of symbols.
"""
def __init__(self, xs):
"""
:param xs: a list of (symbol, value) pairs.
"""
super(Valuation, self).__init__()
for (sym, val) in xs:
if isinstance(val, string_types) or isinstance(val, bool):
self[sym] = val
elif isinstance(val, set):
self[sym] = set2rel(val)
else:
msg = textwrap.fill("Error in initializing Valuation. "
"Unrecognized value for symbol '%s':\n%s" % (sym, val), width=66)
raise ValueError(msg)
def __getitem__(self, key):
if key in self:
return dict.__getitem__(self, key)
else:
raise Undefined("Unknown expression: '%s'" % key)
def __str__(self):
return pformat(self)
@property
def domain(self):
"""Set-theoretic domain of the value-space of a Valuation."""
dom = []
for val in self.values():
if isinstance(val, string_types):
dom.append(val)
elif not isinstance(val, bool):
dom.extend([elem for tuple_ in val for elem in tuple_ if elem is not None])
return set(dom)
@property
def symbols(self):
"""The non-logical constants which the Valuation recognizes."""
return sorted(self.keys())
@classmethod
def fromstring(cls, s):
return read_valuation(s)
##########################################
# REs used by the _read_valuation function
##########################################
_VAL_SPLIT_RE = re.compile(r'\s*=+>\s*')
_ELEMENT_SPLIT_RE = re.compile(r'\s*,\s*')
_TUPLES_RE = re.compile(r"""\s*
(\([^)]+\)) # tuple-expression
\s*""", re.VERBOSE)
def _read_valuation_line(s):
"""
Read a line in a valuation file.
Lines are expected to be of the form::
noosa => n
girl => {g1, g2}
chase => {(b1, g1), (b2, g1), (g1, d1), (g2, d2)}
:param s: input line
:type s: str
:return: a pair (symbol, value)
:rtype: tuple
"""
pieces = _VAL_SPLIT_RE.split(s)
symbol = pieces[0]
value = pieces[1]
# check whether the value is meant to be a set
if value.startswith('{'):
value = value[1:-1]
tuple_strings = _TUPLES_RE.findall(value)
# are the set elements tuples?
if tuple_strings:
set_elements = []
for ts in tuple_strings:
ts = ts[1:-1]
element = tuple(_ELEMENT_SPLIT_RE.split(ts))
set_elements.append(element)
else:
set_elements = _ELEMENT_SPLIT_RE.split(value)
value = set(set_elements)
return symbol, value
def read_valuation(s, encoding=None):
"""
Convert a valuation string into a valuation.
:param s: a valuation string
:type s: str
:param encoding: the encoding of the input string, if it is binary
:type encoding: str
:return: a ``nltk.sem`` valuation
:rtype: Valuation
"""
if encoding is not None:
s = s.decode(encoding)
statements = []
for linenum, line in enumerate(s.splitlines()):
line = line.strip()
if line.startswith('#') or line=='': continue
try:
statements.append(_read_valuation_line(line))
except ValueError:
raise ValueError('Unable to parse line %s: %s' % (linenum, line))
return Valuation(statements)
@python_2_unicode_compatible
class Assignment(dict):
"""
A dictionary which represents an assignment of values to variables.
An assigment can only assign values from its domain.
If an unknown expression *a* is passed to a model *M*\ 's
interpretation function *i*, *i* will first check whether *M*\ 's
valuation assigns an interpretation to *a* as a constant, and if
this fails, *i* will delegate the interpretation of *a* to
*g*. *g* only assigns values to individual variables (i.e.,
members of the class ``IndividualVariableExpression`` in the ``logic``
module. If a variable is not assigned a value by *g*, it will raise
an ``Undefined`` exception.
A variable *Assignment* is a mapping from individual variables to
entities in the domain. Individual variables are usually indicated
with the letters ``'x'``, ``'y'``, ``'w'`` and ``'z'``, optionally
followed by an integer (e.g., ``'x0'``, ``'y332'``). Assignments are
created using the ``Assignment`` constructor, which also takes the
domain as a parameter.
>>> from nltk.sem.evaluate import Assignment
>>> dom = set(['u1', 'u2', 'u3', 'u4'])
>>> g3 = Assignment(dom, [('x', 'u1'), ('y', 'u2')])
>>> g3 == {'x': 'u1', 'y': 'u2'}
True
There is also a ``print`` format for assignments which uses a notation
closer to that in logic textbooks:
>>> print(g3)
g[u1/x][u2/y]
It is also possible to update an assignment using the ``add`` method:
>>> dom = set(['u1', 'u2', 'u3', 'u4'])
>>> g4 = Assignment(dom)
>>> g4.add('x', 'u1')
{'x': 'u1'}
With no arguments, ``purge()`` is equivalent to ``clear()`` on a dictionary:
>>> g4.purge()
>>> g4
{}
:param domain: the domain of discourse
:type domain: set
:param assign: a list of (varname, value) associations
:type assign: list
"""
def __init__(self, domain, assign=None):
super(Assignment, self).__init__()
self.domain = domain
if assign:
for (var, val) in assign:
assert val in self.domain,\
"'%s' is not in the domain: %s" % (val, self.domain)
assert is_indvar(var),\
"Wrong format for an Individual Variable: '%s'" % var
self[var] = val
self.variant = None
self._addvariant()
def __getitem__(self, key):
if key in self:
return dict.__getitem__(self, key)
else:
raise Undefined("Not recognized as a variable: '%s'" % key)
def copy(self):
new = Assignment(self.domain)
new.update(self)
return new
def purge(self, var=None):
"""
Remove one or all keys (i.e. logic variables) from an
assignment, and update ``self.variant``.
:param var: a Variable acting as a key for the assignment.
"""
if var:
del self[var]
else:
self.clear()
self._addvariant()
return None
def __str__(self):
"""
Pretty printing for assignments. {'x', 'u'} appears as 'g[u/x]'
"""
gstring = "g"
# Deterministic output for unit testing.
variant = sorted(self.variant)
for (val, var) in variant:
gstring += "[%s/%s]" % (val, var)
return gstring
def _addvariant(self):
"""
Create a more pretty-printable version of the assignment.
"""
list_ = []
for item in self.items():
pair = (item[1], item[0])
list_.append(pair)
self.variant = list_
return None
def add(self, var, val):
"""
Add a new variable-value pair to the assignment, and update
``self.variant``.
"""
assert val in self.domain,\
"%s is not in the domain %s" % (val, self.domain)
assert is_indvar(var),\
"Wrong format for an Individual Variable: '%s'" % var
self[var] = val
self._addvariant()
return self
@python_2_unicode_compatible
class Model(object):
"""
A first order model is a domain *D* of discourse and a valuation *V*.
A domain *D* is a set, and a valuation *V* is a map that associates
expressions with values in the model.
The domain of *V* should be a subset of *D*.
Construct a new ``Model``.
:type domain: set
:param domain: A set of entities representing the domain of discourse of the model.
:type valuation: Valuation
:param valuation: the valuation of the model.
:param prop: If this is set, then we are building a propositional\
model and don't require the domain of *V* to be subset of *D*.
"""
def __init__(self, domain, valuation):
assert isinstance(domain, set)
self.domain = domain
self.valuation = valuation
if not domain.issuperset(valuation.domain):
raise Error("The valuation domain, %s, must be a subset of the model's domain, %s"\
% (valuation.domain, domain))
def __repr__(self):
return "(%r, %r)" % (self.domain, self.valuation)
def __str__(self):
return "Domain = %s,\nValuation = \n%s" % (self.domain, self.valuation)
def evaluate(self, expr, g, trace=None):
"""
Read input expressions, and provide a handler for ``satisfy``
that blocks further propagation of the ``Undefined`` error.
:param expr: An ``Expression`` of ``logic``.
:type g: Assignment
:param g: an assignment to individual variables.
:rtype: bool or 'Undefined'
"""
try:
parsed = Expression.fromstring(expr)
value = self.satisfy(parsed, g, trace=trace)
if trace:
print()
print("'%s' evaluates to %s under M, %s" % (expr, value, g))
return value
except Undefined:
if trace:
print()
print("'%s' is undefined under M, %s" % (expr, g))
return 'Undefined'
def satisfy(self, parsed, g, trace=None):
"""
Recursive interpretation function for a formula of first-order logic.
Raises an ``Undefined`` error when ``parsed`` is an atomic string
but is not a symbol or an individual variable.
:return: Returns a truth value or ``Undefined`` if ``parsed`` is\
complex, and calls the interpretation function ``i`` if ``parsed``\
is atomic.
:param parsed: An expression of ``logic``.
:type g: Assignment
:param g: an assignment to individual variables.
"""
if isinstance(parsed, ApplicationExpression):
function, arguments = parsed.uncurry()
if isinstance(function, AbstractVariableExpression):
#It's a predicate expression ("P(x,y)"), so used uncurried arguments
funval = self.satisfy(function, g)
argvals = tuple(self.satisfy(arg, g) for arg in arguments)
return argvals in funval
else:
#It must be a lambda expression, so use curried form
funval = self.satisfy(parsed.function, g)
argval = self.satisfy(parsed.argument, g)
return funval[argval]
elif isinstance(parsed, NegatedExpression):
return not self.satisfy(parsed.term, g)
elif isinstance(parsed, AndExpression):
return self.satisfy(parsed.first, g) and \
self.satisfy(parsed.second, g)
elif isinstance(parsed, OrExpression):
return self.satisfy(parsed.first, g) or \
self.satisfy(parsed.second, g)
elif isinstance(parsed, ImpExpression):
return (not self.satisfy(parsed.first, g)) or \
self.satisfy(parsed.second, g)
elif isinstance(parsed, IffExpression):
return self.satisfy(parsed.first, g) == \
self.satisfy(parsed.second, g)
elif isinstance(parsed, EqualityExpression):
return self.satisfy(parsed.first, g) == \
self.satisfy(parsed.second, g)
elif isinstance(parsed, AllExpression):
new_g = g.copy()
for u in self.domain:
new_g.add(parsed.variable.name, u)
if not self.satisfy(parsed.term, new_g):
return False
return True
elif isinstance(parsed, ExistsExpression):
new_g = g.copy()
for u in self.domain:
new_g.add(parsed.variable.name, u)
if self.satisfy(parsed.term, new_g):
return True
return False
elif isinstance(parsed, LambdaExpression):
cf = {}
var = parsed.variable.name
for u in self.domain:
val = self.satisfy(parsed.term, g.add(var, u))
# NB the dict would be a lot smaller if we do this:
# if val: cf[u] = val
# But then need to deal with cases where f(a) should yield
# a function rather than just False.
cf[u] = val
return cf
else:
return self.i(parsed, g, trace)
#@decorator(trace_eval)
def i(self, parsed, g, trace=False):
"""
An interpretation function.
Assuming that ``parsed`` is atomic:
- if ``parsed`` is a non-logical constant, calls the valuation *V*
- else if ``parsed`` is an individual variable, calls assignment *g*
- else returns ``Undefined``.
:param parsed: an ``Expression`` of ``logic``.
:type g: Assignment
:param g: an assignment to individual variables.
:return: a semantic value
"""
# If parsed is a propositional letter 'p', 'q', etc, it could be in valuation.symbols
# and also be an IndividualVariableExpression. We want to catch this first case.
# So there is a procedural consequence to the ordering of clauses here:
if parsed.variable.name in self.valuation.symbols:
return self.valuation[parsed.variable.name]
elif isinstance(parsed, IndividualVariableExpression):
return g[parsed.variable.name]
else:
raise Undefined("Can't find a value for %s" % parsed)
def satisfiers(self, parsed, varex, g, trace=None, nesting=0):
"""
Generate the entities from the model's domain that satisfy an open formula.
:param parsed: an open formula
:type parsed: Expression
:param varex: the relevant free individual variable in ``parsed``.
:type varex: VariableExpression or str
:param g: a variable assignment
:type g: Assignment
:return: a set of the entities that satisfy ``parsed``.
"""
spacer = ' '
indent = spacer + (spacer * nesting)
candidates = []
if isinstance(varex, string_types):
var = Variable(varex)
else:
var = varex
if var in parsed.free():
if trace:
print()
print((spacer * nesting) + "Open formula is '%s' with assignment %s" % (parsed, g))
for u in self.domain:
new_g = g.copy()
new_g.add(var.name, u)
if trace and trace > 1:
lowtrace = trace-1
else:
lowtrace = 0
value = self.satisfy(parsed, new_g, lowtrace)
if trace:
print(indent + "(trying assignment %s)" % new_g)
# parsed == False under g[u/var]?
if value == False:
if trace:
print(indent + "value of '%s' under %s is False" % (parsed, new_g))
# so g[u/var] is a satisfying assignment
else:
candidates.append(u)
if trace:
print(indent + "value of '%s' under %s is %s" % (parsed, new_g, value))
result = set(c for c in candidates)
# var isn't free in parsed
else:
raise Undefined("%s is not free in %s" % (var.name, parsed))
return result
#//////////////////////////////////////////////////////////////////////
# Demo..
#//////////////////////////////////////////////////////////////////////
# number of spacer chars
mult = 30
# Demo 1: Propositional Logic
#################
def propdemo(trace=None):
"""Example of a propositional model."""
global val1, dom1, m1, g1
val1 = Valuation([('P', True), ('Q', True), ('R', False)])
dom1 = set([])
m1 = Model(dom1, val1)
g1 = Assignment(dom1)
print()
print('*' * mult)
print("Propositional Formulas Demo")
print('*' * mult)
print('(Propositional constants treated as nullary predicates)')
print()
print("Model m1:\n", m1)
print('*' * mult)
sentences = [
'(P & Q)',
'(P & R)',
'- P',
'- R',
'- - P',
'- (P & R)',
'(P | R)',
'(R | P)',
'(R | R)',
'(- P | R)',
'(P | - P)',
'(P -> Q)',
'(P -> R)',
'(R -> P)',
'(P <-> P)',
'(R <-> R)',
'(P <-> R)',
]
for sent in sentences:
if trace:
print()
m1.evaluate(sent, g1, trace)
else:
print("The value of '%s' is: %s" % (sent, m1.evaluate(sent, g1)))
# Demo 2: FOL Model
#############
def folmodel(quiet=False, trace=None):
"""Example of a first-order model."""
global val2, v2, dom2, m2, g2
v2 = [('adam', 'b1'), ('betty', 'g1'), ('fido', 'd1'),\
('girl', set(['g1', 'g2'])), ('boy', set(['b1', 'b2'])), ('dog', set(['d1'])),
('love', set([('b1', 'g1'), ('b2', 'g2'), ('g1', 'b1'), ('g2', 'b1')]))]
val2 = Valuation(v2)
dom2 = val2.domain
m2 = Model(dom2, val2)
g2 = Assignment(dom2, [('x', 'b1'), ('y', 'g2')])
if not quiet:
print()
print('*' * mult)
print("Models Demo")
print("*" * mult)
print("Model m2:\n", "-" * 14,"\n", m2)
print("Variable assignment = ", g2)
exprs = ['adam', 'boy', 'love', 'walks', 'x', 'y', 'z']
parsed_exprs = [Expression.fromstring(e) for e in exprs]
print()
for parsed in parsed_exprs:
try:
print("The interpretation of '%s' in m2 is %s" % (parsed, m2.i(parsed, g2)))
except Undefined:
print("The interpretation of '%s' in m2 is Undefined" % parsed)
applications = [('boy', ('adam')), ('walks', ('adam',)), ('love', ('adam', 'y')), ('love', ('y', 'adam'))]
for (fun, args) in applications:
try:
funval = m2.i(Expression.fromstring(fun), g2)
argsval = tuple(m2.i(Expression.fromstring(arg), g2) for arg in args)
print("%s(%s) evaluates to %s" % (fun, args, argsval in funval))
except Undefined:
print("%s(%s) evaluates to Undefined" % (fun, args))
# Demo 3: FOL
#########
def foldemo(trace=None):
"""
Interpretation of closed expressions in a first-order model.
"""
folmodel(quiet=True)
print()
print('*' * mult)
print("FOL Formulas Demo")
print('*' * mult)
formulas = [
'love (adam, betty)',
'(adam = mia)',
'\\x. (boy(x) | girl(x))',
'\\x. boy(x)(adam)',
'\\x y. love(x, y)',
'\\x y. love(x, y)(adam)(betty)',
'\\x y. love(x, y)(adam, betty)',
'\\x y. (boy(x) & love(x, y))',
'\\x. exists y. (boy(x) & love(x, y))',
'exists z1. boy(z1)',
'exists x. (boy(x) & -(x = adam))',
'exists x. (boy(x) & all y. love(y, x))',
'all x. (boy(x) | girl(x))',
'all x. (girl(x) -> exists y. boy(y) & love(x, y))', #Every girl loves exists boy.
'exists x. (boy(x) & all y. (girl(y) -> love(y, x)))', #There is exists boy that every girl loves.
'exists x. (boy(x) & all y. (girl(y) -> love(x, y)))', #exists boy loves every girl.
'all x. (dog(x) -> - girl(x))',
'exists x. exists y. (love(x, y) & love(x, y))'
]
for fmla in formulas:
g2.purge()
if trace:
m2.evaluate(fmla, g2, trace)
else:
print("The value of '%s' is: %s" % (fmla, m2.evaluate(fmla, g2)))
# Demo 3: Satisfaction
#############
def satdemo(trace=None):
"""Satisfiers of an open formula in a first order model."""
print()
print('*' * mult)
print("Satisfiers Demo")
print('*' * mult)
folmodel(quiet=True)
formulas = [
'boy(x)',
'(x = x)',
'(boy(x) | girl(x))',
'(boy(x) & girl(x))',
'love(adam, x)',
'love(x, adam)',
'-(x = adam)',
'exists z22. love(x, z22)',
'exists y. love(y, x)',
'all y. (girl(y) -> love(x, y))',
'all y. (girl(y) -> love(y, x))',
'all y. (girl(y) -> (boy(x) & love(y, x)))',
'(boy(x) & all y. (girl(y) -> love(x, y)))',
'(boy(x) & all y. (girl(y) -> love(y, x)))',
'(boy(x) & exists y. (girl(y) & love(y, x)))',
'(girl(x) -> dog(x))',
'all y. (dog(y) -> (x = y))',
'exists y. love(y, x)',
'exists y. (love(adam, y) & love(y, x))'
]
if trace:
print(m2)
for fmla in formulas:
print(fmla)
Expression.fromstring(fmla)
parsed = [Expression.fromstring(fmla) for fmla in formulas]
for p in parsed:
g2.purge()
print("The satisfiers of '%s' are: %s" % (p, m2.satisfiers(p, 'x', g2, trace)))
def demo(num=0, trace=None):
"""
Run exists demos.
- num = 1: propositional logic demo
- num = 2: first order model demo (only if trace is set)
- num = 3: first order sentences demo
- num = 4: satisfaction of open formulas demo
- any other value: run all the demos
:param trace: trace = 1, or trace = 2 for more verbose tracing
"""
demos = {
1: propdemo,
2: folmodel,
3: foldemo,
4: satdemo}
try:
demos[num](trace=trace)
except KeyError:
for num in demos:
demos[num](trace=trace)
if __name__ == "__main__":
demo(2, trace=0)