113 lines
3.4 KiB
Python
113 lines
3.4 KiB
Python
# Natural Language Toolkit: Interface to TADM Classifier
|
|
#
|
|
# Copyright (C) 2001-2018 NLTK Project
|
|
# Author: Joseph Frazee <jfrazee@mail.utexas.edu>
|
|
# URL: <http://nltk.org/>
|
|
# For license information, see LICENSE.TXT
|
|
from __future__ import print_function, unicode_literals
|
|
|
|
import sys
|
|
import subprocess
|
|
|
|
from six import string_types
|
|
|
|
from nltk.internals import find_binary
|
|
try:
|
|
import numpy
|
|
except ImportError:
|
|
pass
|
|
|
|
_tadm_bin = None
|
|
def config_tadm(bin=None):
|
|
global _tadm_bin
|
|
_tadm_bin = find_binary(
|
|
'tadm', bin,
|
|
env_vars=['TADM'],
|
|
binary_names=['tadm'],
|
|
url='http://tadm.sf.net')
|
|
|
|
def write_tadm_file(train_toks, encoding, stream):
|
|
"""
|
|
Generate an input file for ``tadm`` based on the given corpus of
|
|
classified tokens.
|
|
|
|
:type train_toks: list(tuple(dict, str))
|
|
:param train_toks: Training data, represented as a list of
|
|
pairs, the first member of which is a feature dictionary,
|
|
and the second of which is a classification label.
|
|
:type encoding: TadmEventMaxentFeatureEncoding
|
|
:param encoding: A feature encoding, used to convert featuresets
|
|
into feature vectors.
|
|
:type stream: stream
|
|
:param stream: The stream to which the ``tadm`` input file should be
|
|
written.
|
|
"""
|
|
# See the following for a file format description:
|
|
#
|
|
# http://sf.net/forum/forum.php?thread_id=1391502&forum_id=473054
|
|
# http://sf.net/forum/forum.php?thread_id=1675097&forum_id=473054
|
|
labels = encoding.labels()
|
|
for featureset, label in train_toks:
|
|
length_line = '%d\n' % len(labels)
|
|
stream.write(length_line)
|
|
for known_label in labels:
|
|
v = encoding.encode(featureset, known_label)
|
|
line = '%d %d %s\n' % (
|
|
int(label == known_label),
|
|
len(v),
|
|
' '.join('%d %d' % u for u in v)
|
|
)
|
|
stream.write(line)
|
|
|
|
def parse_tadm_weights(paramfile):
|
|
"""
|
|
Given the stdout output generated by ``tadm`` when training a
|
|
model, return a ``numpy`` array containing the corresponding weight
|
|
vector.
|
|
"""
|
|
weights = []
|
|
for line in paramfile:
|
|
weights.append(float(line.strip()))
|
|
return numpy.array(weights, 'd')
|
|
|
|
def call_tadm(args):
|
|
"""
|
|
Call the ``tadm`` binary with the given arguments.
|
|
"""
|
|
if isinstance(args, string_types):
|
|
raise TypeError('args should be a list of strings')
|
|
if _tadm_bin is None:
|
|
config_tadm()
|
|
|
|
# Call tadm via a subprocess
|
|
cmd = [_tadm_bin] + args
|
|
p = subprocess.Popen(cmd, stdout=sys.stdout)
|
|
(stdout, stderr) = p.communicate()
|
|
|
|
# Check the return code.
|
|
if p.returncode != 0:
|
|
print()
|
|
print(stderr)
|
|
raise OSError('tadm command failed!')
|
|
|
|
def names_demo():
|
|
from nltk.classify.util import names_demo
|
|
from nltk.classify.maxent import TadmMaxentClassifier
|
|
classifier = names_demo(TadmMaxentClassifier.train)
|
|
|
|
def encoding_demo():
|
|
import sys
|
|
from nltk.classify.maxent import TadmEventMaxentFeatureEncoding
|
|
tokens = [({'f0':1, 'f1':1, 'f3':1}, 'A'),
|
|
({'f0':1, 'f2':1, 'f4':1}, 'B'),
|
|
({'f0':2, 'f2':1, 'f3':1, 'f4':1}, 'A')]
|
|
encoding = TadmEventMaxentFeatureEncoding.train(tokens)
|
|
write_tadm_file(tokens, encoding, sys.stdout)
|
|
print()
|
|
for i in range(encoding.length()):
|
|
print('%s --> %d' % (encoding.describe(i), i))
|
|
print()
|
|
|
|
if __name__ == '__main__':
|
|
encoding_demo()
|
|
names_demo()
|