laywerrobot/lib/python3.6/site-packages/gensim/test/test_lsimodel.py
2020-08-27 21:55:39 +02:00

189 lines
8.2 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2010 Radim Rehurek <radimrehurek@seznam.cz>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""
Automated tests for checking transformation algorithms (the models package).
"""
import logging
import unittest
import numpy as np
import scipy.linalg
from gensim import matutils
from gensim.corpora.mmcorpus import MmCorpus
from gensim.models import lsimodel
from gensim.test import basetmtests
from gensim.test.utils import datapath, get_tmpfile
class TestLsiModel(unittest.TestCase, basetmtests.TestBaseTopicModel):
def setUp(self):
self.corpus = MmCorpus(datapath('testcorpus.mm'))
self.model = lsimodel.LsiModel(self.corpus, num_topics=2)
def testTransform(self):
"""Test lsi[vector] transformation."""
# create the transformation model
model = self.model
# make sure the decomposition is enough accurate
u, s, vt = scipy.linalg.svd(matutils.corpus2dense(self.corpus, self.corpus.num_terms), full_matrices=False)
self.assertTrue(np.allclose(s[:2], model.projection.s)) # singular values must match
# transform one document
doc = list(self.corpus)[0]
transformed = model[doc]
vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests
expected = np.array([-0.6594664, 0.142115444]) # scaled LSI version
# expected = np.array([-0.1973928, 0.05591352]) # non-scaled LSI version
self.assertTrue(np.allclose(abs(vec), abs(expected))) # transformed entries must be equal up to sign
def testTransformFloat32(self):
"""Test lsi[vector] transformation."""
# create the transformation model
model = lsimodel.LsiModel(self.corpus, num_topics=2, dtype=np.float32)
# make sure the decomposition is enough accurate
u, s, vt = scipy.linalg.svd(matutils.corpus2dense(self.corpus, self.corpus.num_terms), full_matrices=False)
self.assertTrue(np.allclose(s[:2], model.projection.s)) # singular values must match
self.assertEqual(model.projection.u.dtype, np.float32)
self.assertEqual(model.projection.s.dtype, np.float32)
# transform one document
doc = list(self.corpus)[0]
transformed = model[doc]
vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests
expected = np.array([-0.6594664, 0.142115444]) # scaled LSI version
# transformed entries must be equal up to sign
self.assertTrue(np.allclose(abs(vec), abs(expected), atol=1.e-5))
def testCorpusTransform(self):
"""Test lsi[corpus] transformation."""
model = self.model
got = np.vstack(matutils.sparse2full(doc, 2) for doc in model[self.corpus])
expected = np.array([
[0.65946639, 0.14211544],
[2.02454305, -0.42088759],
[1.54655361, 0.32358921],
[1.81114125, 0.5890525],
[0.9336738, -0.27138939],
[0.01274618, -0.49016181],
[0.04888203, -1.11294699],
[0.08063836, -1.56345594],
[0.27381003, -1.34694159]
])
self.assertTrue(np.allclose(abs(got), abs(expected))) # must equal up to sign
def testOnlineTransform(self):
corpus = list(self.corpus)
doc = corpus[0] # use the corpus' first document for testing
# create the transformation model
model2 = lsimodel.LsiModel(corpus=corpus, num_topics=5) # compute everything at once
# start with no documents, we will add them later
model = lsimodel.LsiModel(corpus=None, id2word=model2.id2word, num_topics=5)
# train model on a single document
model.add_documents([corpus[0]])
# transform the testing document with this partial transformation
transformed = model[doc]
vec = matutils.sparse2full(transformed, model.num_topics) # convert to dense vector, for easier equality tests
expected = np.array([-1.73205078, 0.0, 0.0, 0.0, 0.0]) # scaled LSI version
self.assertTrue(np.allclose(abs(vec), abs(expected), atol=1e-6)) # transformed entries must be equal up to sign
# train on another 4 documents
model.add_documents(corpus[1:5], chunksize=2) # train on 4 extra docs, in chunks of 2 documents, for the lols
# transform a document with this partial transformation
transformed = model[doc]
vec = matutils.sparse2full(transformed, model.num_topics) # convert to dense vector, for easier equality tests
expected = np.array([-0.66493785, -0.28314203, -1.56376302, 0.05488682, 0.17123269]) # scaled LSI version
self.assertTrue(np.allclose(abs(vec), abs(expected), atol=1e-6)) # transformed entries must be equal up to sign
# train on the rest of documents
model.add_documents(corpus[5:])
# make sure the final transformation is the same as if we had decomposed the whole corpus at once
vec1 = matutils.sparse2full(model[doc], model.num_topics)
vec2 = matutils.sparse2full(model2[doc], model2.num_topics)
# the two LSI representations must equal up to sign
self.assertTrue(np.allclose(abs(vec1), abs(vec2), atol=1e-5))
def testPersistence(self):
fname = get_tmpfile('gensim_models_lsi.tst')
model = self.model
model.save(fname)
model2 = lsimodel.LsiModel.load(fname)
self.assertEqual(model.num_topics, model2.num_topics)
self.assertTrue(np.allclose(model.projection.u, model2.projection.u))
self.assertTrue(np.allclose(model.projection.s, model2.projection.s))
tstvec = []
self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector
def testPersistenceCompressed(self):
fname = get_tmpfile('gensim_models_lsi.tst.gz')
model = self.model
model.save(fname)
model2 = lsimodel.LsiModel.load(fname, mmap=None)
self.assertEqual(model.num_topics, model2.num_topics)
self.assertTrue(np.allclose(model.projection.u, model2.projection.u))
self.assertTrue(np.allclose(model.projection.s, model2.projection.s))
tstvec = []
self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector
def testLargeMmap(self):
fname = get_tmpfile('gensim_models_lsi.tst')
model = self.model
# test storing the internal arrays into separate files
model.save(fname, sep_limit=0)
# now load the external arrays via mmap
model2 = lsimodel.LsiModel.load(fname, mmap='r')
self.assertEqual(model.num_topics, model2.num_topics)
self.assertTrue(isinstance(model2.projection.u, np.memmap))
self.assertTrue(isinstance(model2.projection.s, np.memmap))
self.assertTrue(np.allclose(model.projection.u, model2.projection.u))
self.assertTrue(np.allclose(model.projection.s, model2.projection.s))
tstvec = []
self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector
def testLargeMmapCompressed(self):
fname = get_tmpfile('gensim_models_lsi.tst.gz')
model = self.model
# test storing the internal arrays into separate files
model.save(fname, sep_limit=0)
# now load the external arrays via mmap
return
# turns out this test doesn't exercise this because there are no arrays
# to be mmaped!
self.assertRaises(IOError, lsimodel.LsiModel.load, fname, mmap='r')
def testDocsProcessed(self):
self.assertEqual(self.model.docs_processed, 9)
self.assertEqual(self.model.docs_processed, self.corpus.num_docs)
def test_get_topics(self):
topics = self.model.get_topics()
vocab_size = len(self.model.id2word)
for topic in topics:
self.assertTrue(isinstance(topic, np.ndarray))
self.assertEqual(topic.dtype, np.float64)
self.assertEqual(vocab_size, topic.shape[0])
# LSI topics are not probability distributions
# self.assertAlmostEqual(np.sum(topic), 1.0, 5)
if __name__ == '__main__':
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG)
unittest.main()