laywerrobot/lib/python3.6/site-packages/gensim/test/simspeed.py
2020-08-27 21:55:39 +02:00

188 lines
7.4 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2011 Radim Rehurek <radimrehurek@seznam.cz>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""
USAGE: %(program)s CORPUS_DENSE.mm CORPUS_SPARSE.mm [NUMDOCS]
Run speed test of similarity queries. Only use the first NUMDOCS documents of \
each corpus for testing (or use all if no NUMDOCS is given).
The two sample corpora can be downloaded from http://nlp.fi.muni.cz/projekty/gensim/wikismall.tgz
Example: ./simspeed.py wikismall.dense.mm wikismall.sparse.mm 5000
"""
import logging
import sys
import itertools
import os
import math
from time import time
import numpy as np
import gensim
if __name__ == '__main__':
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
logging.info("running %s", " ".join(sys.argv))
# check and process cmdline input
program = os.path.basename(sys.argv[0])
if len(sys.argv) < 3:
print(globals()['__doc__'] % locals())
sys.exit(1)
corpus_dense = gensim.corpora.MmCorpus(sys.argv[1])
corpus_sparse = gensim.corpora.MmCorpus(sys.argv[2])
NUMTERMS = corpus_sparse.num_terms
if len(sys.argv) > 3:
NUMDOCS = int(sys.argv[3])
corpus_dense = list(itertools.islice(corpus_dense, NUMDOCS))
corpus_sparse = list(itertools.islice(corpus_sparse, NUMDOCS))
# create the query index to be tested (one for dense input, one for sparse)
index_dense = gensim.similarities.MatrixSimilarity(corpus_dense)
index_sparse = gensim.similarities.SparseMatrixSimilarity(corpus_sparse, num_terms=NUMTERMS)
density = 100.0 * index_sparse.index.nnz / (index_sparse.index.shape[0] * index_sparse.index.shape[1])
# Difference between test #1 and test #3 is that the query in #1 is a gensim iterable
# corpus, while in #3, the index is used directly (np arrays). So #1 is slower,
# because it needs to convert sparse vecs to np arrays and normalize them to
# unit length=extra work, which #3 avoids.
query = list(itertools.islice(corpus_dense, 1000))
logging.info(
"test 1 (dense): dense corpus of %i docs vs. index (%i documents, %i dense features)",
len(query), len(index_dense), index_dense.num_features
)
for chunksize in [1, 4, 8, 16, 64, 128, 256, 512, 1024]:
start = time()
if chunksize > 1:
sims = []
for chunk in gensim.utils.chunkize_serial(query, chunksize):
sim = index_dense[chunk]
sims.extend(sim)
else:
sims = [index_dense[vec] for vec in query]
assert len(sims) == len(query) # make sure we have one result for each query document
taken = time() - start
queries = math.ceil(1.0 * len(query) / chunksize)
logging.info(
"chunksize=%i, time=%.4fs (%.2f docs/s, %.2f queries/s)",
chunksize, taken, len(query) / taken, queries / taken
)
# Same comment as for test #1 but vs. test #4.
query = list(itertools.islice(corpus_sparse, 1000))
logging.info(
"test 2 (sparse): sparse corpus of %i docs vs. sparse index (%i documents, %i features, %.2f%% density)",
len(query), len(corpus_sparse), index_sparse.index.shape[1], density
)
for chunksize in [1, 5, 10, 100, 500, 1000]:
start = time()
if chunksize > 1:
sims = []
for chunk in gensim.utils.chunkize_serial(query, chunksize):
sim = index_sparse[chunk]
sims.extend(sim)
else:
sims = [index_sparse[vec] for vec in query]
assert len(sims) == len(query) # make sure we have one result for each query document
taken = time() - start
queries = math.ceil(1.0 * len(query) / chunksize)
logging.info(
"chunksize=%i, time=%.4fs (%.2f docs/s, %.2f queries/s)",
chunksize, taken, len(query) / taken, queries / taken
)
logging.info(
"test 3 (dense): similarity of all vs. all (%i documents, %i dense features)",
len(corpus_dense), index_dense.num_features
)
for chunksize in [0, 1, 4, 8, 16, 64, 128, 256, 512, 1024]:
index_dense.chunksize = chunksize
start = time()
# `sims` stores the entire N x N sim matrix in memory!
# this is not necessary, but i added it to test the accuracy of the result
# (=report mean diff below)
sims = list(index_dense)
taken = time() - start
sims = np.asarray(sims)
if chunksize == 0:
logging.info(
"chunksize=%i, time=%.4fs (%.2f docs/s)",
chunksize, taken, len(corpus_dense) / taken
)
unchunksizeed = sims
else:
queries = math.ceil(1.0 * len(corpus_dense) / chunksize)
diff = np.mean(np.abs(unchunksizeed - sims))
logging.info(
"chunksize=%i, time=%.4fs (%.2f docs/s, %.2f queries/s), meandiff=%.3e",
chunksize, taken, len(corpus_dense) / taken, queries / taken, diff
)
del sims
index_dense.num_best = 10
logging.info("test 4 (dense): as above, but only ask for the top-10 most similar for each document")
for chunksize in [0, 1, 4, 8, 16, 64, 128, 256, 512, 1024]:
index_dense.chunksize = chunksize
start = time()
sims = list(index_dense)
taken = time() - start
if chunksize == 0:
queries = len(corpus_dense)
else:
queries = math.ceil(1.0 * len(corpus_dense) / chunksize)
logging.info(
"chunksize=%i, time=%.4fs (%.2f docs/s, %.2f queries/s)",
chunksize, taken, len(corpus_dense) / taken, queries / taken
)
index_dense.num_best = None
logging.info(
"test 5 (sparse): similarity of all vs. all (%i documents, %i features, %.2f%% density)",
len(corpus_sparse), index_sparse.index.shape[1], density
)
for chunksize in [0, 5, 10, 100, 500, 1000, 5000]:
index_sparse.chunksize = chunksize
start = time()
sims = list(index_sparse)
taken = time() - start
sims = np.asarray(sims)
if chunksize == 0:
logging.info(
"chunksize=%i, time=%.4fs (%.2f docs/s)",
chunksize, taken, len(corpus_sparse) / taken
)
unchunksizeed = sims
else:
queries = math.ceil(1.0 * len(corpus_sparse) / chunksize)
diff = np.mean(np.abs(unchunksizeed - sims))
logging.info(
"chunksize=%i, time=%.4fs (%.2f docs/s, %.2f queries/s), meandiff=%.3e",
chunksize, taken, len(corpus_sparse) / taken, queries / taken, diff
)
del sims
index_sparse.num_best = 10
logging.info("test 6 (sparse): as above, but only ask for the top-10 most similar for each document")
for chunksize in [0, 5, 10, 100, 500, 1000, 5000]:
index_sparse.chunksize = chunksize
start = time()
sims = list(index_sparse)
taken = time() - start
if chunksize == 0:
queries = len(corpus_sparse)
else:
queries = math.ceil(1.0 * len(corpus_sparse) / chunksize)
logging.info(
"chunksize=%i, time=%.4fs (%.2f docs/s, %.2f queries/s)",
chunksize, taken, len(corpus_sparse) / taken, queries / taken
)
index_sparse.num_best = None
logging.info("finished running %s", program)