laywerrobot/lib/python3.6/site-packages/gensim/models/rpmodel.py
2020-08-27 21:55:39 +02:00

157 lines
5.6 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2010 Radim Rehurek <radimrehurek@seznam.cz>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""Random Projections (also known as Random Indexing).
For theoretical background on Random Projections, see [1]_.
Examples
--------
>>> from gensim.models import RpModel
>>> from gensim.corpora import Dictionary
>>> from gensim.test.utils import common_texts, temporary_file
>>>
>>> dictionary = Dictionary(common_texts) # fit dictionary
>>> corpus = [dictionary.doc2bow(text) for text in common_texts] # convert texts to BoW format
>>>
>>> model = RpModel(corpus, id2word=dictionary) # fit model
>>> result = model[corpus[3]] # apply model to document, result is vector in BoW format
>>>
>>> with temporary_file("model_file") as fname:
... model.save(fname) # save model to file
... loaded_model = RpModel.load(fname) # load model
References
----------
.. [1] Kanerva et al., 2000, Random indexing of text samples for Latent Semantic Analysis,
https://cloudfront.escholarship.org/dist/prd/content/qt5644k0w6/qt5644k0w6.pdf
"""
import logging
import numpy as np
from gensim import interfaces, matutils, utils
logger = logging.getLogger('gensim.models.rpmodel')
class RpModel(interfaces.TransformationABC):
def __init__(self, corpus, id2word=None, num_topics=300):
"""
Parameters
----------
corpus : iterable of iterable of (int, int)
Input corpus.
id2word : {dict of (int, str), :class:`~gensim.corpora.dictionary.Dictionary`}, optional
Mapping `token_id` -> `token`, will be determine from corpus if `id2word == None`.
num_topics : int, optional
Number of topics.
"""
self.id2word = id2word
self.num_topics = num_topics
if corpus is not None:
self.initialize(corpus)
def __str__(self):
return "RpModel(num_terms=%s, num_topics=%s)" % (self.num_terms, self.num_topics)
def initialize(self, corpus):
"""Initialize the random projection matrix.
Parameters
----------
corpus : iterable of iterable of (int, int)
Input corpus.
"""
if self.id2word is None:
logger.info("no word id mapping provided; initializing from corpus, assuming identity")
self.id2word = utils.dict_from_corpus(corpus)
self.num_terms = len(self.id2word)
else:
self.num_terms = 1 + max([-1] + self.id2word.keys())
shape = self.num_topics, self.num_terms
logger.info("constructing %s random matrix", str(shape))
# Now construct the projection matrix itself.
# Here i use a particular form, derived in "Achlioptas: Database-friendly random projection",
# and his (1) scenario of Theorem 1.1 in particular (all entries are +1/-1).
randmat = 1 - 2 * np.random.binomial(1, 0.5, shape) # convert from 0/1 to +1/-1
# convert from int32 to floats, for faster multiplications
self.projection = np.asfortranarray(randmat, dtype=np.float32)
# TODO: check whether the Fortran-order shenanigans still make sense. In the original
# code (~2010), this made a BIG difference for np BLAS implementations; perhaps now the wrappers
# are smarter and this is no longer needed?
def __getitem__(self, bow):
"""Get random-projection representation of the input vector or corpus.
Parameters
----------
bow : {list of (int, int), iterable of list of (int, int)}
Input document or corpus.
Returns
-------
list of (int, float)
if `bow` is document OR
:class:`~gensim.interfaces.TransformedCorpus`
if `bow` is corpus.
Examples
----------
>>> from gensim.models import RpModel
>>> from gensim.corpora import Dictionary
>>> from gensim.test.utils import common_texts
>>>
>>> dictionary = Dictionary(common_texts) # fit dictionary
>>> corpus = [dictionary.doc2bow(text) for text in common_texts] # convert texts to BoW format
>>>
>>> model = RpModel(corpus, id2word=dictionary) # fit model
>>> result = model[corpus[0]] # apply model to document, result is vector in BoW format, i.e. [(1, 0.3), ... ]
"""
# if the input vector is in fact a corpus, return a transformed corpus as result
is_corpus, bow = utils.is_corpus(bow)
if is_corpus:
return self._apply(bow)
if getattr(self, 'freshly_loaded', False):
# This is a hack to work around a bug in np, where a FORTRAN-order array
# unpickled from disk segfaults on using it.
self.freshly_loaded = False
self.projection = self.projection.copy('F') # simply making a fresh copy fixes the broken array
vec = matutils.sparse2full(bow, self.num_terms).reshape(self.num_terms, 1) / np.sqrt(self.num_topics)
vec = np.asfortranarray(vec, dtype=np.float32)
topic_dist = np.dot(self.projection, vec) # (k, d) * (d, 1) = (k, 1)
return [
(topicid, float(topicvalue)) for topicid, topicvalue in enumerate(topic_dist.flat)
if np.isfinite(topicvalue) and not np.allclose(topicvalue, 0.0)
]
def __setstate__(self, state):
"""Sets the internal state and updates freshly_loaded to True, called when unpicked.
Parameters
----------
state : dict
State of the class.
"""
self.__dict__ = state
self.freshly_loaded = True