laywerrobot/lib/python3.6/site-packages/gensim/models/deprecated/doc2vec.py
2020-08-27 21:55:39 +02:00

1032 lines
46 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2013 Radim Rehurek <me@radimrehurek.com>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""
Warnings
--------
.. deprecated:: 3.3.0
Use :mod:`gensim.models.doc2vec` instead.
Deep learning via the distributed memory and distributed bag of words models from
[1]_, using either hierarchical softmax or negative sampling [2]_ [3]_. See [#tutorial]_
**Make sure you have a C compiler before installing gensim, to use optimized (compiled)
doc2vec training** (70x speedup [blog]_).
Initialize a model with e.g.::
>>> model = Doc2Vec(documents, size=100, window=8, min_count=5, workers=4)
Persist a model to disk with::
>>> model.save(fname)
>>> model = Doc2Vec.load(fname) # you can continue training with the loaded model!
If you're finished training a model (=no more updates, only querying), you can do
>>> model.delete_temporary_training_data(keep_doctags_vectors=True, keep_inference=True):
to trim unneeded model memory = use (much) less RAM.
.. [1] Quoc Le and Tomas Mikolov. Distributed Representations of Sentences and Documents.
http://arxiv.org/pdf/1405.4053v2.pdf
.. [2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.
.. [3] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013.
.. [blog] Optimizing word2vec in gensim, http://radimrehurek.com/2013/09/word2vec-in-python-part-two-optimizing/
.. [#tutorial] Doc2vec in gensim tutorial,
https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/doc2vec-lee.ipynb
"""
import logging
import os
try:
from queue import Queue
except ImportError:
from Queue import Queue # noqa:F401
from collections import namedtuple, defaultdict
from timeit import default_timer
from numpy import zeros, sum as np_sum, add as np_add, concatenate, \
repeat as np_repeat, array, float32 as REAL, empty, ones, memmap as np_memmap, \
sqrt, newaxis, ndarray, dot, vstack, dtype, divide as np_divide, integer
from gensim import utils
from gensim.utils import call_on_class_only, deprecated
from gensim.models.deprecated.word2vec import Word2Vec, train_cbow_pair, train_sg_pair, train_batch_sg,\
MAX_WORDS_IN_BATCH
from gensim.models.deprecated.keyedvectors import KeyedVectors
from gensim.models.doc2vec import Doc2Vec as NewDoc2Vec
from gensim.models.deprecated.old_saveload import SaveLoad
from gensim import matutils # utility fnc for pickling, common scipy operations etc
from six.moves import xrange, zip
from six import string_types, integer_types
logger = logging.getLogger(__name__)
def load_old_doc2vec(*args, **kwargs):
old_model = Doc2Vec.load(*args, **kwargs)
params = {
'dm_mean': old_model.__dict__.get('dm_mean', None),
'dm': old_model.dm,
'dbow_words': old_model.dbow_words,
'dm_concat': old_model.dm_concat,
'dm_tag_count': old_model.dm_tag_count,
'docvecs_mapfile': old_model.__dict__.get('docvecs_mapfile', None),
'comment': old_model.__dict__.get('comment', None),
'size': old_model.vector_size,
'alpha': old_model.alpha,
'window': old_model.window,
'min_count': old_model.min_count,
'max_vocab_size': old_model.__dict__.get('max_vocab_size', None),
'sample': old_model.sample,
'seed': old_model.seed,
'workers': old_model.workers,
'min_alpha': old_model.min_alpha,
'hs': old_model.hs,
'negative': old_model.negative,
'cbow_mean': old_model.cbow_mean,
'hashfxn': old_model.hashfxn,
'iter': old_model.iter,
'sorted_vocab': old_model.__dict__.get('sorted_vocab', 1),
'batch_words': old_model.__dict__.get('batch_words', MAX_WORDS_IN_BATCH),
'compute_loss': old_model.__dict__.get('compute_loss', None)
}
new_model = NewDoc2Vec(**params)
# set word2vec trainables attributes
new_model.wv.vectors = old_model.wv.syn0
if hasattr(old_model.wv, 'syn0norm'):
new_model.docvecs.vectors_norm = old_model.wv.syn0norm
if hasattr(old_model, 'syn1'):
new_model.trainables.syn1 = old_model.syn1
if hasattr(old_model, 'syn1neg'):
new_model.trainables.syn1neg = old_model.syn1neg
if hasattr(old_model, 'syn0_lockf'):
new_model.trainables.vectors_lockf = old_model.syn0_lockf
# set doc2vec trainables attributes
new_model.docvecs.vectors_docs = old_model.docvecs.doctag_syn0
if hasattr(old_model.docvecs, 'doctag_syn0norm'):
new_model.docvecs.vectors_docs_norm = old_model.docvecs.doctag_syn0norm
if hasattr(old_model.docvecs, 'doctag_syn0_lockf'):
new_model.trainables.vectors_docs_lockf = old_model.docvecs.doctag_syn0_lockf
if hasattr(old_model.docvecs, 'mapfile_path'):
new_model.docvecs.mapfile_path = old_model.docvecs.mapfile_path
# set word2vec vocabulary attributes
new_model.wv.vocab = old_model.wv.vocab
new_model.wv.index2word = old_model.wv.index2word
new_model.vocabulary.cum_table = old_model.cum_table
# set doc2vec vocabulary attributes
new_model.docvecs.doctags = old_model.docvecs.doctags
new_model.docvecs.count = old_model.docvecs.count
if hasattr(old_model.docvecs, 'max_rawint'): # `doc2vec` models before `0.12.3` do not have these 2 attributes
new_model.docvecs.max_rawint = old_model.docvecs.__dict__.get('max_rawint')
new_model.docvecs.offset2doctag = old_model.docvecs.__dict__.get('offset2doctag')
else:
# Doc2Vec models before Gensim version 0.12.3 did not have `max_rawint` and `offset2doctag` as they did not
# mixing of string and int tags. This implies the new attribute `offset2doctag` equals the old `index2doctag`
# (which was only filled if the documents had string tags).
# This also implies that the new attribute, `max_rawint`(highest rawint-indexed doctag) would either be equal
# to the initial value -1, in case only string tags are used or would be equal to `count` if only int indexing
# was used.
new_model.docvecs.max_rawint = -1 if old_model.docvecs.index2doctag else old_model.docvecs.count - 1
new_model.docvecs.offset2doctag = old_model.docvecs.index2doctag
new_model.train_count = old_model.__dict__.get('train_count', None)
new_model.corpus_count = old_model.__dict__.get('corpus_count', None)
new_model.running_training_loss = old_model.__dict__.get('running_training_loss', 0)
new_model.total_train_time = old_model.__dict__.get('total_train_time', None)
new_model.min_alpha_yet_reached = old_model.__dict__.get('min_alpha_yet_reached', old_model.alpha)
new_model.model_trimmed_post_training = old_model.__dict__.get('model_trimmed_post_training', None)
return new_model
def train_document_dbow(model, doc_words, doctag_indexes, alpha, work=None,
train_words=False, learn_doctags=True, learn_words=True, learn_hidden=True,
word_vectors=None, word_locks=None, doctag_vectors=None, doctag_locks=None):
"""
Update distributed bag of words model ("PV-DBOW") by training on a single document.
Called internally from `Doc2Vec.train()` and `Doc2Vec.infer_vector()`.
The document is provided as `doc_words`, a list of word tokens which are looked up
in the model's vocab dictionary, and `doctag_indexes`, which provide indexes
into the doctag_vectors array.
If `train_words` is True, simultaneously train word-to-word (not just doc-to-word)
examples, exactly as per Word2Vec skip-gram training. (Without this option,
word vectors are neither consulted nor updated during DBOW doc vector training.)
Any of `learn_doctags', `learn_words`, and `learn_hidden` may be set False to
prevent learning-updates to those respective model weights, as if using the
(partially-)frozen model to infer other compatible vectors.
This is the non-optimized, Python version. If you have cython installed, gensim
will use the optimized version from doc2vec_inner instead.
"""
if doctag_vectors is None:
doctag_vectors = model.docvecs.doctag_syn0
if doctag_locks is None:
doctag_locks = model.docvecs.doctag_syn0_lockf
if train_words and learn_words:
train_batch_sg(model, [doc_words], alpha, work)
for doctag_index in doctag_indexes:
for word in doc_words:
train_sg_pair(
model, word, doctag_index, alpha, learn_vectors=learn_doctags, learn_hidden=learn_hidden,
context_vectors=doctag_vectors, context_locks=doctag_locks
)
return len(doc_words)
def train_document_dm(model, doc_words, doctag_indexes, alpha, work=None, neu1=None,
learn_doctags=True, learn_words=True, learn_hidden=True,
word_vectors=None, word_locks=None, doctag_vectors=None, doctag_locks=None):
"""
Update distributed memory model ("PV-DM") by training on a single document.
Called internally from `Doc2Vec.train()` and `Doc2Vec.infer_vector()`. This
method implements the DM model with a projection (input) layer that is
either the sum or mean of the context vectors, depending on the model's
`dm_mean` configuration field. See `train_document_dm_concat()` for the DM
model with a concatenated input layer.
The document is provided as `doc_words`, a list of word tokens which are looked up
in the model's vocab dictionary, and `doctag_indexes`, which provide indexes
into the doctag_vectors array.
Any of `learn_doctags', `learn_words`, and `learn_hidden` may be set False to
prevent learning-updates to those respective model weights, as if using the
(partially-)frozen model to infer other compatible vectors.
This is the non-optimized, Python version. If you have a C compiler, gensim
will use the optimized version from doc2vec_inner instead.
"""
if word_vectors is None:
word_vectors = model.wv.syn0
if word_locks is None:
word_locks = model.syn0_lockf
if doctag_vectors is None:
doctag_vectors = model.docvecs.doctag_syn0
if doctag_locks is None:
doctag_locks = model.docvecs.doctag_syn0_lockf
word_vocabs = [model.wv.vocab[w] for w in doc_words if w in model.wv.vocab and
model.wv.vocab[w].sample_int > model.random.rand() * 2**32]
for pos, word in enumerate(word_vocabs):
reduced_window = model.random.randint(model.window) # `b` in the original doc2vec code
start = max(0, pos - model.window + reduced_window)
window_pos = enumerate(word_vocabs[start:(pos + model.window + 1 - reduced_window)], start)
word2_indexes = [word2.index for pos2, word2 in window_pos if pos2 != pos]
l1 = np_sum(word_vectors[word2_indexes], axis=0) + np_sum(doctag_vectors[doctag_indexes], axis=0)
count = len(word2_indexes) + len(doctag_indexes)
if model.cbow_mean and count > 1:
l1 /= count
neu1e = train_cbow_pair(model, word, word2_indexes, l1, alpha,
learn_vectors=False, learn_hidden=learn_hidden)
if not model.cbow_mean and count > 1:
neu1e /= count
if learn_doctags:
for i in doctag_indexes:
doctag_vectors[i] += neu1e * doctag_locks[i]
if learn_words:
for i in word2_indexes:
word_vectors[i] += neu1e * word_locks[i]
return len(word_vocabs)
def train_document_dm_concat(model, doc_words, doctag_indexes, alpha, work=None, neu1=None, learn_doctags=True,
learn_words=True, learn_hidden=True, word_vectors=None, word_locks=None,
doctag_vectors=None, doctag_locks=None):
"""
Update distributed memory model ("PV-DM") by training on a single document, using a
concatenation of the context window word vectors (rather than a sum or average).
Called internally from `Doc2Vec.train()` and `Doc2Vec.infer_vector()`.
The document is provided as `doc_words`, a list of word tokens which are looked up
in the model's vocab dictionary, and `doctag_indexes`, which provide indexes
into the doctag_vectors array.
Any of `learn_doctags', `learn_words`, and `learn_hidden` may be set False to
prevent learning-updates to those respective model weights, as if using the
(partially-)frozen model to infer other compatible vectors.
This is the non-optimized, Python version. If you have a C compiler, gensim
will use the optimized version from doc2vec_inner instead.
"""
if word_vectors is None:
word_vectors = model.wv.syn0
if word_locks is None:
word_locks = model.syn0_lockf
if doctag_vectors is None:
doctag_vectors = model.docvecs.doctag_syn0
if doctag_locks is None:
doctag_locks = model.docvecs.doctag_syn0_lockf
word_vocabs = [model.wv.vocab[w] for w in doc_words if w in model.wv.vocab and
model.wv.vocab[w].sample_int > model.random.rand() * 2**32]
doctag_len = len(doctag_indexes)
if doctag_len != model.dm_tag_count:
return 0 # skip doc without expected number of doctag(s) (TODO: warn/pad?)
null_word = model.wv.vocab['\0']
pre_pad_count = model.window
post_pad_count = model.window
padded_document_indexes = (
(pre_pad_count * [null_word.index]) # pre-padding
+ [word.index for word in word_vocabs if word is not None] # elide out-of-Vocabulary words
+ (post_pad_count * [null_word.index]) # post-padding
)
for pos in range(pre_pad_count, len(padded_document_indexes) - post_pad_count):
word_context_indexes = (
padded_document_indexes[(pos - pre_pad_count): pos] # preceding words
+ padded_document_indexes[(pos + 1):(pos + 1 + post_pad_count)] # following words
)
predict_word = model.wv.vocab[model.wv.index2word[padded_document_indexes[pos]]]
# numpy advanced-indexing copies; concatenate, flatten to 1d
l1 = concatenate((doctag_vectors[doctag_indexes], word_vectors[word_context_indexes])).ravel()
neu1e = train_cbow_pair(model, predict_word, None, l1, alpha,
learn_hidden=learn_hidden, learn_vectors=False)
# filter by locks and shape for addition to source vectors
e_locks = concatenate((doctag_locks[doctag_indexes], word_locks[word_context_indexes]))
neu1e_r = (neu1e.reshape(-1, model.vector_size)
* np_repeat(e_locks, model.vector_size).reshape(-1, model.vector_size))
if learn_doctags:
np_add.at(doctag_vectors, doctag_indexes, neu1e_r[:doctag_len])
if learn_words:
np_add.at(word_vectors, word_context_indexes, neu1e_r[doctag_len:])
return len(padded_document_indexes) - pre_pad_count - post_pad_count
class TaggedDocument(namedtuple('TaggedDocument', 'words tags')):
"""
A single document, made up of `words` (a list of unicode string tokens)
and `tags` (a list of tokens). Tags may be one or more unicode string
tokens, but typical practice (which will also be most memory-efficient) is
for the tags list to include a unique integer id as the only tag.
Replaces "sentence as a list of words" from Word2Vec.
"""
def __str__(self):
return '%s(%s, %s)' % (self.__class__.__name__, self.words, self.tags)
# for compatibility
@deprecated("Class will be removed in 4.0.0, use TaggedDocument instead")
class LabeledSentence(TaggedDocument):
pass
class DocvecsArray(SaveLoad):
"""
Default storage of doc vectors during/after training, in a numpy array.
As the 'docvecs' property of a Doc2Vec model, allows access and
comparison of document vectors.
>>> docvec = d2v_model.docvecs[99]
>>> docvec = d2v_model.docvecs['SENT_99'] # if string tag used in training
>>> sims = d2v_model.docvecs.most_similar(99)
>>> sims = d2v_model.docvecs.most_similar('SENT_99')
>>> sims = d2v_model.docvecs.most_similar(docvec)
If only plain int tags are presented during training, the dict (of
string tag -> index) and list (of index -> string tag) stay empty,
saving memory.
Supplying a mapfile_path (as by initializing a Doc2Vec model with a
'docvecs_mapfile' value) will use a pair of memory-mapped
files as the array backing for doctag_syn0/doctag_syn0_lockf values.
The Doc2Vec model automatically uses this class, but a future alternative
implementation, based on another persistence mechanism like LMDB, LevelDB,
or SQLite, should also be possible.
"""
def __init__(self, mapfile_path=None):
self.doctags = {} # string -> Doctag (only filled if necessary)
self.max_rawint = -1 # highest rawint-indexed doctag
self.offset2doctag = [] # int offset-past-(max_rawint+1) -> String (only filled if necessary)
self.count = 0
self.mapfile_path = mapfile_path
def note_doctag(self, key, document_no, document_length):
"""Note a document tag during initial corpus scan, for structure sizing."""
if isinstance(key, integer_types + (integer,)):
self.max_rawint = max(self.max_rawint, key)
else:
if key in self.doctags:
self.doctags[key] = self.doctags[key].repeat(document_length)
else:
self.doctags[key] = Doctag(len(self.offset2doctag), document_length, 1)
self.offset2doctag.append(key)
self.count = self.max_rawint + 1 + len(self.offset2doctag)
def indexed_doctags(self, doctag_tokens):
"""Return indexes and backing-arrays used in training examples."""
return ([self._int_index(index) for index in doctag_tokens if index in self],
self.doctag_syn0, self.doctag_syn0_lockf, doctag_tokens)
def trained_item(self, indexed_tuple):
"""Persist any changes made to the given indexes (matching tuple previously
returned by indexed_doctags()); a no-op for this implementation"""
pass
def _int_index(self, index):
"""Return int index for either string or int index"""
if isinstance(index, integer_types + (integer,)):
return index
else:
return self.max_rawint + 1 + self.doctags[index].offset
@deprecated("Method will be removed in 4.0.0, use self.index_to_doctag instead")
def _key_index(self, i_index, missing=None):
"""Return string index for given int index, if available"""
return self.index_to_doctag(i_index)
def index_to_doctag(self, i_index):
"""Return string key for given i_index, if available. Otherwise return raw int doctag (same int)."""
candidate_offset = i_index - self.max_rawint - 1
if 0 <= candidate_offset < len(self.offset2doctag):
return self.offset2doctag[candidate_offset]
else:
return i_index
def __getitem__(self, index):
"""
Accept a single key (int or string tag) or list of keys as input.
If a single string or int, return designated tag's vector
representation, as a 1D numpy array.
If a list, return designated tags' vector representations as a
2D numpy array: #tags x #vector_size.
"""
if isinstance(index, string_types + integer_types + (integer,)):
return self.doctag_syn0[self._int_index(index)]
return vstack([self[i] for i in index])
def __len__(self):
return self.count
def __contains__(self, index):
if isinstance(index, integer_types + (integer,)):
return index < self.count
else:
return index in self.doctags
def save(self, *args, **kwargs):
# don't bother storing the cached normalized vectors
kwargs['ignore'] = kwargs.get('ignore', ['syn0norm'])
super(DocvecsArray, self).save(*args, **kwargs)
def borrow_from(self, other_docvecs):
self.count = other_docvecs.count
self.doctags = other_docvecs.doctags
self.offset2doctag = other_docvecs.offset2doctag
def clear_sims(self):
self.doctag_syn0norm = None
def estimated_lookup_memory(self):
"""Estimated memory for tag lookup; 0 if using pure int tags."""
return 60 * len(self.offset2doctag) + 140 * len(self.doctags)
def reset_weights(self, model):
length = max(len(self.doctags), self.count)
if self.mapfile_path:
self.doctag_syn0 = np_memmap(
self.mapfile_path + '.doctag_syn0', dtype=REAL, mode='w+', shape=(length, model.vector_size)
)
self.doctag_syn0_lockf = np_memmap(
self.mapfile_path + '.doctag_syn0_lockf', dtype=REAL, mode='w+', shape=(length,)
)
self.doctag_syn0_lockf.fill(1.0)
else:
self.doctag_syn0 = empty((length, model.vector_size), dtype=REAL)
self.doctag_syn0_lockf = ones((length,), dtype=REAL) # zeros suppress learning
for i in xrange(length):
# construct deterministic seed from index AND model seed
seed = "%d %s" % (model.seed, self.index_to_doctag(i))
self.doctag_syn0[i] = model.seeded_vector(seed)
def init_sims(self, replace=False):
"""
Precompute L2-normalized vectors.
If `replace` is set, forget the original vectors and only keep the normalized
ones = saves lots of memory!
Note that you **cannot continue training or inference** after doing a replace.
The model becomes effectively read-only = you can call `most_similar`, `similarity`
etc., but not `train` or `infer_vector`.
"""
if getattr(self, 'doctag_syn0norm', None) is None or replace:
logger.info("precomputing L2-norms of doc weight vectors")
if replace:
for i in xrange(self.doctag_syn0.shape[0]):
self.doctag_syn0[i, :] /= sqrt((self.doctag_syn0[i, :] ** 2).sum(-1))
self.doctag_syn0norm = self.doctag_syn0
else:
if self.mapfile_path:
self.doctag_syn0norm = np_memmap(
self.mapfile_path + '.doctag_syn0norm', dtype=REAL,
mode='w+', shape=self.doctag_syn0.shape)
else:
self.doctag_syn0norm = empty(self.doctag_syn0.shape, dtype=REAL)
np_divide(self.doctag_syn0, sqrt((self.doctag_syn0 ** 2).sum(-1))[..., newaxis], self.doctag_syn0norm)
def most_similar(self, positive=None, negative=None, topn=10, clip_start=0, clip_end=None, indexer=None):
"""
Find the top-N most similar docvecs known from training. Positive docs contribute
positively towards the similarity, negative docs negatively.
This method computes cosine similarity between a simple mean of the projection
weight vectors of the given docs. Docs may be specified as vectors, integer indexes
of trained docvecs, or if the documents were originally presented with string tags,
by the corresponding tags.
The 'clip_start' and 'clip_end' allow limiting results to a particular contiguous
range of the underlying doctag_syn0norm vectors. (This may be useful if the ordering
there was chosen to be significant, such as more popular tag IDs in lower indexes.)
"""
if positive is None:
positive = []
if negative is None:
negative = []
self.init_sims()
clip_end = clip_end or len(self.doctag_syn0norm)
if isinstance(positive, string_types + integer_types + (integer,)) and not negative:
# allow calls like most_similar('dog'), as a shorthand for most_similar(['dog'])
positive = [positive]
# add weights for each doc, if not already present; default to 1.0 for positive and -1.0 for negative docs
positive = [
(doc, 1.0) if isinstance(doc, string_types + integer_types + (ndarray, integer))
else doc for doc in positive
]
negative = [
(doc, -1.0) if isinstance(doc, string_types + integer_types + (ndarray, integer))
else doc for doc in negative
]
# compute the weighted average of all docs
all_docs, mean = set(), []
for doc, weight in positive + negative:
if isinstance(doc, ndarray):
mean.append(weight * doc)
elif doc in self.doctags or doc < self.count:
mean.append(weight * self.doctag_syn0norm[self._int_index(doc)])
all_docs.add(self._int_index(doc))
else:
raise KeyError("doc '%s' not in trained set" % doc)
if not mean:
raise ValueError("cannot compute similarity with no input")
mean = matutils.unitvec(array(mean).mean(axis=0)).astype(REAL)
if indexer is not None:
return indexer.most_similar(mean, topn)
dists = dot(self.doctag_syn0norm[clip_start:clip_end], mean)
if not topn:
return dists
best = matutils.argsort(dists, topn=topn + len(all_docs), reverse=True)
# ignore (don't return) docs from the input
result = [
(self.index_to_doctag(sim + clip_start), float(dists[sim]))
for sim in best
if (sim + clip_start) not in all_docs
]
return result[:topn]
def doesnt_match(self, docs):
"""
Which doc from the given list doesn't go with the others?
(TODO: Accept vectors of out-of-training-set docs, as if from inference.)
"""
self.init_sims()
docs = [doc for doc in docs if doc in self.doctags or 0 <= doc < self.count] # filter out unknowns
logger.debug("using docs %s", docs)
if not docs:
raise ValueError("cannot select a doc from an empty list")
vectors = vstack(self.doctag_syn0norm[self._int_index(doc)] for doc in docs).astype(REAL)
mean = matutils.unitvec(vectors.mean(axis=0)).astype(REAL)
dists = dot(vectors, mean)
return sorted(zip(dists, docs))[0][1]
def similarity(self, d1, d2):
"""
Compute cosine similarity between two docvecs in the trained set, specified by int index or
string tag. (TODO: Accept vectors of out-of-training-set docs, as if from inference.)
"""
return dot(matutils.unitvec(self[d1]), matutils.unitvec(self[d2]))
def n_similarity(self, ds1, ds2):
"""
Compute cosine similarity between two sets of docvecs from the trained set, specified by int
index or string tag. (TODO: Accept vectors of out-of-training-set docs, as if from inference.)
"""
v1 = [self[doc] for doc in ds1]
v2 = [self[doc] for doc in ds2]
return dot(matutils.unitvec(array(v1).mean(axis=0)), matutils.unitvec(array(v2).mean(axis=0)))
def similarity_unseen_docs(self, model, doc_words1, doc_words2, alpha=0.1, min_alpha=0.0001, steps=5):
"""
Compute cosine similarity between two post-bulk out of training documents.
Document should be a list of (word) tokens.
"""
d1 = model.infer_vector(doc_words=doc_words1, alpha=alpha, min_alpha=min_alpha, steps=steps)
d2 = model.infer_vector(doc_words=doc_words2, alpha=alpha, min_alpha=min_alpha, steps=steps)
return dot(matutils.unitvec(d1), matutils.unitvec(d2))
class Doctag(namedtuple('Doctag', 'offset, word_count, doc_count')):
"""A string document tag discovered during the initial vocabulary
scan. (The document-vector equivalent of a Vocab object.)
Will not be used if all presented document tags are ints.
The offset is only the true index into the doctags_syn0/doctags_syn0_lockf
if-and-only-if no raw-int tags were used. If any raw-int tags were used,
string Doctag vectors begin at index (max_rawint + 1), so the true index is
(rawint_index + 1 + offset). See also DocvecsArray.index_to_doctag().
"""
__slots__ = ()
def repeat(self, word_count):
return self._replace(word_count=self.word_count + word_count, doc_count=self.doc_count + 1)
class Doc2Vec(Word2Vec):
"""Class for training, using and evaluating neural networks described in http://arxiv.org/pdf/1405.4053v2.pdf"""
def __init__(self, documents=None, dm_mean=None, dm=1, dbow_words=0, dm_concat=0, dm_tag_count=1,
docvecs=None, docvecs_mapfile=None, comment=None, trim_rule=None, **kwargs):
"""
Initialize the model from an iterable of `documents`. Each document is a
TaggedDocument object that will be used for training.
The `documents` iterable can be simply a list of TaggedDocument elements, but for larger corpora,
consider an iterable that streams the documents directly from disk/network.
If you don't supply `documents`, the model is left uninitialized -- use if
you plan to initialize it in some other way.
`dm` defines the training algorithm. By default (`dm=1`), 'distributed memory' (PV-DM) is used.
Otherwise, `distributed bag of words` (PV-DBOW) is employed.
`size` is the dimensionality of the feature vectors.
`window` is the maximum distance between the predicted word and context words used for prediction
within a document.
`alpha` is the initial learning rate (will linearly drop to `min_alpha` as training progresses).
`seed` = for the random number generator.
Note that for a fully deterministically-reproducible run, you must also limit the model to
a single worker thread, to eliminate ordering jitter from OS thread scheduling. (In Python
3, reproducibility between interpreter launches also requires use of the PYTHONHASHSEED
environment variable to control hash randomization.)
`min_count` = ignore all words with total frequency lower than this.
`max_vocab_size` = limit RAM during vocabulary building; if there are more unique
words than this, then prune the infrequent ones. Every 10 million word types
need about 1GB of RAM. Set to `None` for no limit (default).
`sample` = threshold for configuring which higher-frequency words are randomly downsampled;
default is 1e-3, values of 1e-5 (or lower) may also be useful, set to 0.0 to disable downsampling.
`workers` = use this many worker threads to train the model (=faster training with multicore machines).
`iter` = number of iterations (epochs) over the corpus. The default inherited from Word2Vec is 5,
but values of 10 or 20 are common in published 'Paragraph Vector' experiments.
`hs` = if 1, hierarchical softmax will be used for model training.
If set to 0 (default), and `negative` is non-zero, negative sampling will be used.
`negative` = if > 0, negative sampling will be used, the int for negative
specifies how many "noise words" should be drawn (usually between 5-20).
Default is 5. If set to 0, no negative samping is used.
`dm_mean` = if 0 (default), use the sum of the context word vectors. If 1, use the mean.
Only applies when dm is used in non-concatenative mode.
`dm_concat` = if 1, use concatenation of context vectors rather than sum/average;
default is 0 (off). Note concatenation results in a much-larger model, as the input
is no longer the size of one (sampled or arithmetically combined) word vector, but the
size of the tag(s) and all words in the context strung together.
`dm_tag_count` = expected constant number of document tags per document, when using
dm_concat mode; default is 1.
`dbow_words` if set to 1 trains word-vectors (in skip-gram fashion) simultaneous with DBOW
doc-vector training; default is 0 (faster training of doc-vectors only).
`trim_rule` = vocabulary trimming rule, specifies whether certain words should remain
in the vocabulary, be trimmed away, or handled using the default (discard if word count < min_count).
Can be None (min_count will be used), or a callable that accepts parameters (word, count, min_count) and
returns either util.RULE_DISCARD, util.RULE_KEEP or util.RULE_DEFAULT.
Note: The rule, if given, is only used prune vocabulary during build_vocab() and is not stored as part
of the model.
"""
if 'sentences' in kwargs:
raise DeprecationWarning(
"Parameter 'sentences' was renamed to 'documents', and will be removed in 4.0.0, "
"use 'documents' instead."
)
super(Doc2Vec, self).__init__(
sg=(1 + dm) % 2,
null_word=dm_concat,
**kwargs)
self.load = call_on_class_only
if dm_mean is not None:
self.cbow_mean = dm_mean
self.dbow_words = dbow_words
self.dm_concat = dm_concat
self.dm_tag_count = dm_tag_count
if self.dm and self.dm_concat:
self.layer1_size = (self.dm_tag_count + (2 * self.window)) * self.vector_size
self.docvecs = docvecs or DocvecsArray(docvecs_mapfile)
self.comment = comment
if documents is not None:
self.build_vocab(documents, trim_rule=trim_rule)
self.train(documents, total_examples=self.corpus_count, epochs=self.iter)
@property
def dm(self):
return not self.sg # opposite of SG
@property
def dbow(self):
return self.sg # same as SG
def clear_sims(self):
super(Doc2Vec, self).clear_sims()
self.docvecs.clear_sims()
def reset_weights(self):
if self.dm and self.dm_concat:
# expand l1 size to match concatenated tags+words length
self.layer1_size = (self.dm_tag_count + (2 * self.window)) * self.vector_size
logger.info("using concatenative %d-dimensional layer1", self.layer1_size)
super(Doc2Vec, self).reset_weights()
self.docvecs.reset_weights(self)
def reset_from(self, other_model):
"""Reuse shareable structures from other_model."""
self.docvecs.borrow_from(other_model.docvecs)
super(Doc2Vec, self).reset_from(other_model)
def scan_vocab(self, documents, progress_per=10000, trim_rule=None, update=False):
logger.info("collecting all words and their counts")
document_no = -1
total_words = 0
min_reduce = 1
interval_start = default_timer() - 0.00001 # guard against next sample being identical
interval_count = 0
checked_string_types = 0
vocab = defaultdict(int)
for document_no, document in enumerate(documents):
if not checked_string_types:
if isinstance(document.words, string_types):
logger.warning(
"Each 'words' should be a list of words (usually unicode strings). "
"First 'words' here is instead plain %s.",
type(document.words)
)
checked_string_types += 1
if document_no % progress_per == 0:
interval_rate = (total_words - interval_count) / (default_timer() - interval_start)
logger.info(
"PROGRESS: at example #%i, processed %i words (%i/s), %i word types, %i tags",
document_no, total_words, interval_rate, len(vocab), len(self.docvecs)
)
interval_start = default_timer()
interval_count = total_words
document_length = len(document.words)
for tag in document.tags:
self.docvecs.note_doctag(tag, document_no, document_length)
for word in document.words:
vocab[word] += 1
total_words += len(document.words)
if self.max_vocab_size and len(vocab) > self.max_vocab_size:
utils.prune_vocab(vocab, min_reduce, trim_rule=trim_rule)
min_reduce += 1
logger.info(
"collected %i word types and %i unique tags from a corpus of %i examples and %i words",
len(vocab), len(self.docvecs), document_no + 1, total_words
)
self.corpus_count = document_no + 1
self.raw_vocab = vocab
def _do_train_job(self, job, alpha, inits):
work, neu1 = inits
tally = 0
for doc in job:
indexed_doctags = self.docvecs.indexed_doctags(doc.tags)
doctag_indexes, doctag_vectors, doctag_locks, ignored = indexed_doctags
if self.sg:
tally += train_document_dbow(
self, doc.words, doctag_indexes, alpha, work, train_words=self.dbow_words,
doctag_vectors=doctag_vectors, doctag_locks=doctag_locks
)
elif self.dm_concat:
tally += train_document_dm_concat(
self, doc.words, doctag_indexes, alpha, work, neu1,
doctag_vectors=doctag_vectors, doctag_locks=doctag_locks
)
else:
tally += train_document_dm(
self, doc.words, doctag_indexes, alpha, work, neu1,
doctag_vectors=doctag_vectors, doctag_locks=doctag_locks
)
self.docvecs.trained_item(indexed_doctags)
return tally, self._raw_word_count(job)
def _raw_word_count(self, job):
"""Return the number of words in a given job."""
return sum(len(sentence.words) for sentence in job)
def infer_vector(self, doc_words, alpha=0.1, min_alpha=0.0001, steps=5):
"""
Infer a vector for given post-bulk training document.
Document should be a list of (word) tokens.
"""
doctag_vectors = empty((1, self.vector_size), dtype=REAL)
doctag_vectors[0] = self.seeded_vector(' '.join(doc_words))
doctag_locks = ones(1, dtype=REAL)
doctag_indexes = [0]
work = zeros(self.layer1_size, dtype=REAL)
if not self.sg:
neu1 = matutils.zeros_aligned(self.layer1_size, dtype=REAL)
for i in range(steps):
if self.sg:
train_document_dbow(
self, doc_words, doctag_indexes, alpha, work,
learn_words=False, learn_hidden=False, doctag_vectors=doctag_vectors, doctag_locks=doctag_locks
)
elif self.dm_concat:
train_document_dm_concat(
self, doc_words, doctag_indexes, alpha, work, neu1,
learn_words=False, learn_hidden=False, doctag_vectors=doctag_vectors, doctag_locks=doctag_locks
)
else:
train_document_dm(
self, doc_words, doctag_indexes, alpha, work, neu1,
learn_words=False, learn_hidden=False, doctag_vectors=doctag_vectors, doctag_locks=doctag_locks
)
alpha = ((alpha - min_alpha) / (steps - i)) + min_alpha
return doctag_vectors[0]
def estimate_memory(self, vocab_size=None, report=None):
"""Estimate required memory for a model using current settings."""
report = report or {}
report['doctag_lookup'] = self.docvecs.estimated_lookup_memory()
report['doctag_syn0'] = self.docvecs.count * self.vector_size * dtype(REAL).itemsize
return super(Doc2Vec, self).estimate_memory(vocab_size, report=report)
def __str__(self):
"""Abbreviated name reflecting major configuration paramaters."""
segments = []
if self.comment:
segments.append('"%s"' % self.comment)
if self.sg:
if self.dbow_words:
segments.append('dbow+w') # also training words
else:
segments.append('dbow') # PV-DBOW (skip-gram-style)
else: # PV-DM...
if self.dm_concat:
segments.append('dm/c') # ...with concatenative context layer
else:
if self.cbow_mean:
segments.append('dm/m')
else:
segments.append('dm/s')
segments.append('d%d' % self.vector_size) # dimensions
if self.negative:
segments.append('n%d' % self.negative) # negative samples
if self.hs:
segments.append('hs')
if not self.sg or (self.sg and self.dbow_words):
segments.append('w%d' % self.window) # window size, when relevant
if self.min_count > 1:
segments.append('mc%d' % self.min_count)
if self.sample > 0:
segments.append('s%g' % self.sample)
if self.workers > 1:
segments.append('t%d' % self.workers)
return '%s(%s)' % (self.__class__.__name__, ','.join(segments))
def delete_temporary_training_data(self, keep_doctags_vectors=True, keep_inference=True):
"""
Discard parameters that are used in training and score. Use if you're sure you're done training a model.
Set `keep_doctags_vectors` to False if you don't want to save doctags vectors,
in this case you can't to use docvecs's most_similar, similarity etc. methods.
Set `keep_inference` to False if you don't want to store parameters that is used for infer_vector method
"""
if not keep_inference:
self._minimize_model(False, False, False)
if self.docvecs and hasattr(self.docvecs, 'doctag_syn0') and not keep_doctags_vectors:
del self.docvecs.doctag_syn0
if self.docvecs and hasattr(self.docvecs, 'doctag_syn0_lockf'):
del self.docvecs.doctag_syn0_lockf
def save_word2vec_format(self, fname, doctag_vec=False, word_vec=True, prefix='*dt_', fvocab=None, binary=False):
"""
Store the input-hidden weight matrix.
`fname` is the file used to save the vectors in
`doctag_vec` is an optional boolean indicating whether to store document vectors
`word_vec` is an optional boolean indicating whether to store word vectors
(if both doctag_vec and word_vec are True, then both vectors are stored in the same file)
`prefix` to uniquely identify doctags from word vocab, and avoid collision
in case of repeated string in doctag and word vocab
`fvocab` is an optional file used to save the vocabulary
`binary` is an optional boolean indicating whether the data is to be saved
in binary word2vec format (default: False)
"""
total_vec = len(self.wv.vocab) + len(self.docvecs)
# save word vectors
if word_vec:
if not doctag_vec:
total_vec = len(self.wv.vocab)
KeyedVectors.save_word2vec_format(self.wv, fname, fvocab, binary, total_vec)
# save document vectors
if doctag_vec:
with utils.smart_open(fname, 'ab') as fout:
if not word_vec:
total_vec = len(self.docvecs)
logger.info("storing %sx%s projection weights into %s", total_vec, self.vector_size, fname)
fout.write(utils.to_utf8("%s %s\n" % (total_vec, self.vector_size)))
# store as in input order
for i in range(len(self.docvecs)):
doctag = u"%s%s" % (prefix, self.docvecs.index_to_doctag(i))
row = self.docvecs.doctag_syn0[i]
if binary:
fout.write(utils.to_utf8(doctag) + b" " + row.tostring())
else:
fout.write(utils.to_utf8("%s %s\n" % (doctag, ' '.join("%f" % val for val in row))))
class TaggedBrownCorpus(object):
"""Iterate over documents from the Brown corpus (part of NLTK data), yielding
each document out as a TaggedDocument object."""
def __init__(self, dirname):
self.dirname = dirname
def __iter__(self):
for fname in os.listdir(self.dirname):
fname = os.path.join(self.dirname, fname)
if not os.path.isfile(fname):
continue
for item_no, line in enumerate(utils.smart_open(fname)):
line = utils.to_unicode(line)
# each file line is a single document in the Brown corpus
# each token is WORD/POS_TAG
token_tags = [t.split('/') for t in line.split() if len(t.split('/')) == 2]
# ignore words with non-alphabetic tags like ",", "!" etc (punctuation, weird stuff)
words = ["%s/%s" % (token.lower(), tag[:2]) for token, tag in token_tags if tag[:2].isalpha()]
if not words: # don't bother sending out empty documents
continue
yield TaggedDocument(words, ['%s_SENT_%s' % (fname, item_no)])
class TaggedLineDocument(object):
"""Simple format: one document = one line = one TaggedDocument object.
Words are expected to be already preprocessed and separated by whitespace,
tags are constructed automatically from the document line number."""
def __init__(self, source):
"""
`source` can be either a string (filename) or a file object.
Example::
documents = TaggedLineDocument('myfile.txt')
Or for compressed files::
documents = TaggedLineDocument('compressed_text.txt.bz2')
documents = TaggedLineDocument('compressed_text.txt.gz')
"""
self.source = source
def __iter__(self):
"""Iterate through the lines in the source."""
try:
# Assume it is a file-like object and try treating it as such
# Things that don't have seek will trigger an exception
self.source.seek(0)
for item_no, line in enumerate(self.source):
yield TaggedDocument(utils.to_unicode(line).split(), [item_no])
except AttributeError:
# If it didn't work like a file, use it as a string filename
with utils.smart_open(self.source) as fin:
for item_no, line in enumerate(fin):
yield TaggedDocument(utils.to_unicode(line).split(), [item_no])