laywerrobot/lib/python3.6/site-packages/docutils/utils/math/latex2mathml.py
2020-08-27 21:55:39 +02:00

571 lines
17 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# :Id: $Id: latex2mathml.py 7995 2016-12-10 17:50:59Z milde $
# :Copyright: © 2010 Günter Milde.
# Based on rst2mathml.py from the latex_math sandbox project
# © 2005 Jens Jørgen Mortensen
# :License: Released under the terms of the `2-Clause BSD license`_, in short:
#
# Copying and distribution of this file, with or without modification,
# are permitted in any medium without royalty provided the copyright
# notice and this notice are preserved.
# This file is offered as-is, without any warranty.
#
# .. _2-Clause BSD license: http://www.spdx.org/licenses/BSD-2-Clause
"""Convert LaTex math code into presentational MathML"""
# Based on the `latex_math` sandbox project by Jens Jørgen Mortensen
import docutils.utils.math.tex2unichar as tex2unichar
# TeX spacing combining
over = {'acute': '\u00B4', # u'\u0301',
'bar': '\u00AF', # u'\u0304',
'breve': '\u02D8', # u'\u0306',
'check': '\u02C7', # u'\u030C',
'dot': '\u02D9', # u'\u0307',
'ddot': '\u00A8', # u'\u0308',
'dddot': '\u20DB',
'grave': '`', # u'\u0300',
'hat': '^', # u'\u0302',
'mathring': '\u02DA', # u'\u030A',
'overleftrightarrow': '\u20e1',
# 'overline': # u'\u0305',
'tilde': '\u02DC', # u'\u0303',
'vec': '\u20D7'}
Greek = { # Capital Greek letters: (upright in TeX style)
'Phi':'\u03a6', 'Xi':'\u039e', 'Sigma':'\u03a3',
'Psi':'\u03a8', 'Delta':'\u0394', 'Theta':'\u0398',
'Upsilon':'\u03d2', 'Pi':'\u03a0', 'Omega':'\u03a9',
'Gamma':'\u0393', 'Lambda':'\u039b'}
letters = tex2unichar.mathalpha
special = tex2unichar.mathbin # Binary symbols
special.update(tex2unichar.mathrel) # Relation symbols, arrow symbols
special.update(tex2unichar.mathord) # Miscellaneous symbols
special.update(tex2unichar.mathop) # Variable-sized symbols
special.update(tex2unichar.mathopen) # Braces
special.update(tex2unichar.mathclose) # Braces
special.update(tex2unichar.mathfence)
sumintprod = ''.join([special[symbol] for symbol in
['sum', 'int', 'oint', 'prod']])
functions = ['arccos', 'arcsin', 'arctan', 'arg', 'cos', 'cosh',
'cot', 'coth', 'csc', 'deg', 'det', 'dim',
'exp', 'gcd', 'hom', 'inf', 'ker', 'lg',
'lim', 'liminf', 'limsup', 'ln', 'log', 'max',
'min', 'Pr', 'sec', 'sin', 'sinh', 'sup',
'tan', 'tanh',
'injlim', 'varinjlim', 'varlimsup',
'projlim', 'varliminf', 'varprojlim']
mathbb = {
'A': '\U0001D538',
'B': '\U0001D539',
'C': '\u2102',
'D': '\U0001D53B',
'E': '\U0001D53C',
'F': '\U0001D53D',
'G': '\U0001D53E',
'H': '\u210D',
'I': '\U0001D540',
'J': '\U0001D541',
'K': '\U0001D542',
'L': '\U0001D543',
'M': '\U0001D544',
'N': '\u2115',
'O': '\U0001D546',
'P': '\u2119',
'Q': '\u211A',
'R': '\u211D',
'S': '\U0001D54A',
'T': '\U0001D54B',
'U': '\U0001D54C',
'V': '\U0001D54D',
'W': '\U0001D54E',
'X': '\U0001D54F',
'Y': '\U0001D550',
'Z': '\u2124',
}
mathscr = {
'A': '\U0001D49C',
'B': '\u212C', # bernoulli function
'C': '\U0001D49E',
'D': '\U0001D49F',
'E': '\u2130',
'F': '\u2131',
'G': '\U0001D4A2',
'H': '\u210B', # hamiltonian
'I': '\u2110',
'J': '\U0001D4A5',
'K': '\U0001D4A6',
'L': '\u2112', # lagrangian
'M': '\u2133', # physics m-matrix
'N': '\U0001D4A9',
'O': '\U0001D4AA',
'P': '\U0001D4AB',
'Q': '\U0001D4AC',
'R': '\u211B',
'S': '\U0001D4AE',
'T': '\U0001D4AF',
'U': '\U0001D4B0',
'V': '\U0001D4B1',
'W': '\U0001D4B2',
'X': '\U0001D4B3',
'Y': '\U0001D4B4',
'Z': '\U0001D4B5',
'a': '\U0001D4B6',
'b': '\U0001D4B7',
'c': '\U0001D4B8',
'd': '\U0001D4B9',
'e': '\u212F',
'f': '\U0001D4BB',
'g': '\u210A',
'h': '\U0001D4BD',
'i': '\U0001D4BE',
'j': '\U0001D4BF',
'k': '\U0001D4C0',
'l': '\U0001D4C1',
'm': '\U0001D4C2',
'n': '\U0001D4C3',
'o': '\u2134', # order of
'p': '\U0001D4C5',
'q': '\U0001D4C6',
'r': '\U0001D4C7',
's': '\U0001D4C8',
't': '\U0001D4C9',
'u': '\U0001D4CA',
'v': '\U0001D4CB',
'w': '\U0001D4CC',
'x': '\U0001D4CD',
'y': '\U0001D4CE',
'z': '\U0001D4CF',
}
negatables = {'=': '\u2260',
r'\in': '\u2209',
r'\equiv': '\u2262'}
# LaTeX to MathML translation stuff:
class math:
"""Base class for MathML elements."""
nchildren = 1000000
"""Required number of children"""
def __init__(self, children=None, inline=None):
"""math([children]) -> MathML element
children can be one child or a list of children."""
self.children = []
if children is not None:
if type(children) is list:
for child in children:
self.append(child)
else:
# Only one child:
self.append(children)
if inline is not None:
self.inline = inline
def __repr__(self):
if hasattr(self, 'children'):
return self.__class__.__name__ + '(%s)' % \
','.join([repr(child) for child in self.children])
else:
return self.__class__.__name__
def full(self):
"""Room for more children?"""
return len(self.children) >= self.nchildren
def append(self, child):
"""append(child) -> element
Appends child and returns self if self is not full or first
non-full parent."""
assert not self.full()
self.children.append(child)
child.parent = self
node = self
while node.full():
node = node.parent
return node
def delete_child(self):
"""delete_child() -> child
Delete last child and return it."""
child = self.children[-1]
del self.children[-1]
return child
def close(self):
"""close() -> parent
Close element and return first non-full element."""
parent = self.parent
while parent.full():
parent = parent.parent
return parent
def xml(self):
"""xml() -> xml-string"""
return self.xml_start() + self.xml_body() + self.xml_end()
def xml_start(self):
if not hasattr(self, 'inline'):
return ['<%s>' % self.__class__.__name__]
xmlns = 'http://www.w3.org/1998/Math/MathML'
if self.inline:
return ['<math xmlns="%s">' % xmlns]
else:
return ['<math xmlns="%s" mode="display">' % xmlns]
def xml_end(self):
return ['</%s>' % self.__class__.__name__]
def xml_body(self):
xml = []
for child in self.children:
xml.extend(child.xml())
return xml
class mrow(math):
def xml_start(self):
return ['\n<%s>' % self.__class__.__name__]
class mtable(math):
def xml_start(self):
return ['\n<%s>' % self.__class__.__name__]
class mtr(mrow): pass
class mtd(mrow): pass
class mx(math):
"""Base class for mo, mi, and mn"""
nchildren = 0
def __init__(self, data):
self.data = data
def xml_body(self):
return [self.data]
class mo(mx):
translation = {'<': '&lt;', '>': '&gt;'}
def xml_body(self):
return [self.translation.get(self.data, self.data)]
class mi(mx): pass
class mn(mx): pass
class msub(math):
nchildren = 2
class msup(math):
nchildren = 2
class msqrt(math):
nchildren = 1
class mroot(math):
nchildren = 2
class mfrac(math):
nchildren = 2
class msubsup(math):
nchildren = 3
def __init__(self, children=None, reversed=False):
self.reversed = reversed
math.__init__(self, children)
def xml(self):
if self.reversed:
## self.children[1:3] = self.children[2:0:-1]
self.children[1:3] = [self.children[2], self.children[1]]
self.reversed = False
return math.xml(self)
class mfenced(math):
translation = {'\\{': '{', '\\langle': '\u2329',
'\\}': '}', '\\rangle': '\u232A',
'.': ''}
def __init__(self, par):
self.openpar = par
math.__init__(self)
def xml_start(self):
open = self.translation.get(self.openpar, self.openpar)
close = self.translation.get(self.closepar, self.closepar)
return ['<mfenced open="%s" close="%s">' % (open, close)]
class mspace(math):
nchildren = 0
class mstyle(math):
def __init__(self, children=None, nchildren=None, **kwargs):
if nchildren is not None:
self.nchildren = nchildren
math.__init__(self, children)
self.attrs = kwargs
def xml_start(self):
return ['<mstyle '] + ['%s="%s"' % item
for item in list(self.attrs.items())] + ['>']
class mover(math):
nchildren = 2
def __init__(self, children=None, reversed=False):
self.reversed = reversed
math.__init__(self, children)
def xml(self):
if self.reversed:
self.children.reverse()
self.reversed = False
return math.xml(self)
class munder(math):
nchildren = 2
class munderover(math):
nchildren = 3
def __init__(self, children=None):
math.__init__(self, children)
class mtext(math):
nchildren = 0
def __init__(self, text):
self.text = text
def xml_body(self):
return [self.text]
def parse_latex_math(string, inline=True):
"""parse_latex_math(string [,inline]) -> MathML-tree
Returns a MathML-tree parsed from string. inline=True is for
inline math and inline=False is for displayed math.
tree is the whole tree and node is the current element."""
# Normalize white-space:
string = ' '.join(string.split())
if inline:
node = mrow()
tree = math(node, inline=True)
else:
node = mtd()
tree = math(mtable(mtr(node)), inline=False)
while len(string) > 0:
n = len(string)
c = string[0]
skip = 1 # number of characters consumed
if n > 1:
c2 = string[1]
else:
c2 = ''
## print n, string, c, c2, node.__class__.__name__
if c == ' ':
pass
elif c == '\\':
if c2 in '{}':
node = node.append(mo(c2))
skip = 2
elif c2 == ' ':
node = node.append(mspace())
skip = 2
elif c2 == ',': # TODO: small space
node = node.append(mspace())
skip = 2
elif c2.isalpha():
# We have a LaTeX-name:
i = 2
while i < n and string[i].isalpha():
i += 1
name = string[1:i]
node, skip = handle_keyword(name, node, string[i:])
skip += i
elif c2 == '\\':
# End of a row:
entry = mtd()
row = mtr(entry)
node.close().close().append(row)
node = entry
skip = 2
else:
raise SyntaxError(r'Syntax error: "%s%s"' % (c, c2))
elif c.isalpha():
node = node.append(mi(c))
elif c.isdigit():
node = node.append(mn(c))
elif c in "+-*/=()[]|<>,.!?':;@":
node = node.append(mo(c))
elif c == '_':
child = node.delete_child()
if isinstance(child, msup):
sub = msubsup(child.children, reversed=True)
elif isinstance(child, mo) and child.data in sumintprod:
sub = munder(child)
else:
sub = msub(child)
node.append(sub)
node = sub
elif c == '^':
child = node.delete_child()
if isinstance(child, msub):
sup = msubsup(child.children)
elif isinstance(child, mo) and child.data in sumintprod:
sup = mover(child)
elif (isinstance(child, munder) and
child.children[0].data in sumintprod):
sup = munderover(child.children)
else:
sup = msup(child)
node.append(sup)
node = sup
elif c == '{':
row = mrow()
node.append(row)
node = row
elif c == '}':
node = node.close()
elif c == '&':
entry = mtd()
node.close().append(entry)
node = entry
else:
raise SyntaxError(r'Illegal character: "%s"' % c)
string = string[skip:]
return tree
def handle_keyword(name, node, string):
skip = 0
if len(string) > 0 and string[0] == ' ':
string = string[1:]
skip = 1
if name == 'begin':
if not string.startswith('{matrix}'):
raise SyntaxError('Environment not supported! '
'Supported environment: "matrix".')
skip += 8
entry = mtd()
table = mtable(mtr(entry))
node.append(table)
node = entry
elif name == 'end':
if not string.startswith('{matrix}'):
raise SyntaxError(r'Expected "\end{matrix}"!')
skip += 8
node = node.close().close().close()
elif name in ('text', 'mathrm'):
if string[0] != '{':
raise SyntaxError(r'Expected "\text{...}"!')
i = string.find('}')
if i == -1:
raise SyntaxError(r'Expected "\text{...}"!')
node = node.append(mtext(string[1:i]))
skip += i + 1
elif name == 'sqrt':
sqrt = msqrt()
node.append(sqrt)
node = sqrt
elif name == 'frac':
frac = mfrac()
node.append(frac)
node = frac
elif name == 'left':
for par in ['(', '[', '|', '\\{', '\\langle', '.']:
if string.startswith(par):
break
else:
raise SyntaxError('Missing left-brace!')
fenced = mfenced(par)
node.append(fenced)
row = mrow()
fenced.append(row)
node = row
skip += len(par)
elif name == 'right':
for par in [')', ']', '|', '\\}', '\\rangle', '.']:
if string.startswith(par):
break
else:
raise SyntaxError('Missing right-brace!')
node = node.close()
node.closepar = par
node = node.close()
skip += len(par)
elif name == 'not':
for operator in negatables:
if string.startswith(operator):
break
else:
raise SyntaxError(r'Expected something to negate: "\not ..."!')
node = node.append(mo(negatables[operator]))
skip += len(operator)
elif name == 'mathbf':
style = mstyle(nchildren=1, fontweight='bold')
node.append(style)
node = style
elif name == 'mathbb':
if string[0] != '{' or not string[1].isupper() or string[2] != '}':
raise SyntaxError(r'Expected something like "\mathbb{A}"!')
node = node.append(mi(mathbb[string[1]]))
skip += 3
elif name in ('mathscr', 'mathcal'):
if string[0] != '{' or string[2] != '}':
raise SyntaxError(r'Expected something like "\mathscr{A}"!')
node = node.append(mi(mathscr[string[1]]))
skip += 3
elif name == 'colon': # "normal" colon, not binary operator
node = node.append(mo(':')) # TODO: add ``lspace="0pt"``
elif name in Greek: # Greek capitals (upright in "TeX style")
node = node.append(mo(Greek[name]))
# TODO: "ISO style" sets them italic. Could we use a class argument
# to enable styling via CSS?
elif name in letters:
node = node.append(mi(letters[name]))
elif name in special:
node = node.append(mo(special[name]))
elif name in functions:
node = node.append(mo(name))
elif name in over:
ovr = mover(mo(over[name]), reversed=True)
node.append(ovr)
node = ovr
else:
raise SyntaxError('Unknown LaTeX command: ' + name)
return node, skip
def tex2mathml(tex_math, inline=True):
"""Return string with MathML code corresponding to `tex_math`.
`inline`=True is for inline math and `inline`=False for displayed math.
"""
mathml_tree = parse_latex_math(tex_math, inline=inline)
return ''.join(mathml_tree.xml())