# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ftrl-proximal for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops from tensorflow.python.training import optimizer from tensorflow.python.training import training_ops from tensorflow.python.util.tf_export import tf_export @tf_export("train.FtrlOptimizer") class FtrlOptimizer(optimizer.Optimizer): """Optimizer that implements the FTRL algorithm. See this [paper]( https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf). This version has support for both online L2 (the L2 penalty given in the paper above) and shrinkage-type L2 (which is the addition of an L2 penalty to the loss function). """ def __init__(self, learning_rate, learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, use_locking=False, name="Ftrl", accum_name=None, linear_name=None, l2_shrinkage_regularization_strength=0.0): r"""Construct a new FTRL optimizer. Args: learning_rate: A float value or a constant float `Tensor`. learning_rate_power: A float value, must be less or equal to zero. initial_accumulator_value: The starting value for accumulators. Only zero or positive values are allowed. l1_regularization_strength: A float value, must be greater than or equal to zero. l2_regularization_strength: A float value, must be greater than or equal to zero. use_locking: If `True` use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "Ftrl". accum_name: The suffix for the variable that keeps the gradient squared accumulator. If not present, defaults to name. linear_name: The suffix for the variable that keeps the linear gradient accumulator. If not present, defaults to name + "_1". l2_shrinkage_regularization_strength: A float value, must be greater than or equal to zero. This differs from L2 above in that the L2 above is a stabilization penalty, whereas this L2 shrinkage is a magnitude penalty. The FTRL formulation can be written as: w_{t+1} = argmin_w(\hat{g}_{1:t}w + L1*||w||_1 + L2*||w||_2^2), where \hat{g} = g + (2*L2_shrinkage*w), and g is the gradient of the loss function w.r.t. the weights w. Specifically, in the absence of L1 regularization, it is equivalent to the following update rule: w_{t+1} = w_t - lr_t / (1 + 2*L2*lr_t) * g_t - 2*L2_shrinkage*lr_t / (1 + 2*L2*lr_t) * w_t where lr_t is the learning rate at t. When input is sparse shrinkage will only happen on the active weights. Raises: ValueError: If one of the arguments is invalid. """ super(FtrlOptimizer, self).__init__(use_locking, name) if initial_accumulator_value < 0.0: raise ValueError( "initial_accumulator_value %f needs to be be positive or zero" % initial_accumulator_value) if learning_rate_power > 0.0: raise ValueError("learning_rate_power %f needs to be negative or zero" % learning_rate_power) if l1_regularization_strength < 0.0: raise ValueError( "l1_regularization_strength %f needs to be positive or zero" % l1_regularization_strength) if l2_regularization_strength < 0.0: raise ValueError( "l2_regularization_strength %f needs to be positive or zero" % l2_regularization_strength) if l2_shrinkage_regularization_strength < 0.0: raise ValueError( "l2_shrinkage_regularization_strength %f needs to be positive" " or zero" % l2_shrinkage_regularization_strength) self._learning_rate = learning_rate self._learning_rate_power = learning_rate_power self._initial_accumulator_value = initial_accumulator_value self._l1_regularization_strength = l1_regularization_strength self._l2_regularization_strength = l2_regularization_strength self._l2_shrinkage_regularization_strength = ( l2_shrinkage_regularization_strength) self._learning_rate_tensor = None self._learning_rate_power_tensor = None self._l1_regularization_strength_tensor = None self._l2_regularization_strength_tensor = None self._l2_shrinkage_regularization_strength_tensor = None self._accum_name = accum_name self._linear_name = linear_name def _create_slots(self, var_list): # Create the "accum" and "linear" slots. for v in var_list: with ops.colocate_with(v): val = constant_op.constant( self._initial_accumulator_value, dtype=v.dtype, shape=v.get_shape()) self._get_or_make_slot(v, val, "accum", self._accum_name or self._name) self._zeros_slot(v, "linear", self._linear_name or self._name) def _prepare(self): self._learning_rate_tensor = ops.convert_to_tensor( self._learning_rate, name="learning_rate") self._l1_regularization_strength_tensor = ops.convert_to_tensor( self._l1_regularization_strength, name="l1_regularization_strength") self._l2_regularization_strength_tensor = ops.convert_to_tensor( self._l2_regularization_strength, name="l2_regularization_strength") self._l2_shrinkage_regularization_strength_tensor = ops.convert_to_tensor( self._l2_shrinkage_regularization_strength, name="l2_shrinkage_regularization_strength") self._learning_rate_power_tensor = ops.convert_to_tensor( self._learning_rate_power, name="learning_rate_power") def _apply_dense(self, grad, var): accum = self.get_slot(var, "accum") linear = self.get_slot(var, "linear") if self._l2_shrinkage_regularization_strength <= 0.0: return training_ops.apply_ftrl( var, accum, linear, grad, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), math_ops.cast(self._l1_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._l2_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype), use_locking=self._use_locking) else: return training_ops.apply_ftrl_v2( var, accum, linear, grad, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), math_ops.cast(self._l1_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._l2_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._l2_shrinkage_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype), use_locking=self._use_locking) def _resource_apply_dense(self, grad, var): accum = self.get_slot(var, "accum") linear = self.get_slot(var, "linear") if self._l2_shrinkage_regularization_strength <= 0.0: return training_ops.resource_apply_ftrl( var.handle, accum.handle, linear.handle, grad, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), math_ops.cast(self._l1_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._l2_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype), use_locking=self._use_locking) else: return training_ops.resource_apply_ftrl_v2( var.handle, accum.handle, linear.handle, grad, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), math_ops.cast(self._l1_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._l2_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._l2_shrinkage_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype), use_locking=self._use_locking) def _apply_sparse(self, grad, var): accum = self.get_slot(var, "accum") linear = self.get_slot(var, "linear") if self._l2_shrinkage_regularization_strength <= 0.0: return training_ops.sparse_apply_ftrl( var, accum, linear, grad.values, grad.indices, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), math_ops.cast(self._l1_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._l2_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype), use_locking=self._use_locking) else: return training_ops.sparse_apply_ftrl_v2( var, accum, linear, grad.values, grad.indices, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), math_ops.cast(self._l1_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._l2_regularization_strength_tensor, var.dtype.base_dtype), math_ops.cast(self._l2_shrinkage_regularization_strength_tensor, grad.dtype.base_dtype), math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype), use_locking=self._use_locking) def _resource_apply_sparse(self, grad, var, indices): accum = self.get_slot(var, "accum") linear = self.get_slot(var, "linear") if self._l2_shrinkage_regularization_strength <= 0.0: return training_ops.resource_sparse_apply_ftrl( var.handle, accum.handle, linear.handle, grad, indices, math_ops.cast(self._learning_rate_tensor, grad.dtype), math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype), math_ops.cast(self._l2_regularization_strength_tensor, grad.dtype), math_ops.cast(self._learning_rate_power_tensor, grad.dtype), use_locking=self._use_locking) else: return training_ops.resource_sparse_apply_ftrl_v2( var.handle, accum.handle, linear.handle, grad, indices, math_ops.cast(self._learning_rate_tensor, grad.dtype), math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype), math_ops.cast(self._l2_regularization_strength_tensor, grad.dtype), math_ops.cast(self._l2_shrinkage_regularization_strength_tensor, grad.dtype), math_ops.cast(self._learning_rate_power_tensor, grad.dtype), use_locking=self._use_locking)