# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Adagrad for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.training import optimizer from tensorflow.python.training import training_ops from tensorflow.python.util.tf_export import tf_export @tf_export("train.AdagradOptimizer") class AdagradOptimizer(optimizer.Optimizer): """Optimizer that implements the Adagrad algorithm. See this [paper](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) or this [intro](http://cs.stanford.edu/~ppasupat/a9online/uploads/proximal_notes.pdf). """ def __init__(self, learning_rate, initial_accumulator_value=0.1, use_locking=False, name="Adagrad"): """Construct a new Adagrad optimizer. Args: learning_rate: A `Tensor` or a floating point value. The learning rate. initial_accumulator_value: A floating point value. Starting value for the accumulators, must be positive. use_locking: If `True` use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "Adagrad". Raises: ValueError: If the `initial_accumulator_value` is invalid. @compatibility(eager) When eager execution is enabled, `learning_rate` can be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility """ if initial_accumulator_value <= 0.0: raise ValueError("initial_accumulator_value must be positive: %s" % initial_accumulator_value) super(AdagradOptimizer, self).__init__(use_locking, name) self._learning_rate = learning_rate self._initial_accumulator_value = initial_accumulator_value # Created in Initialize. self._learning_rate_tensor = None def _create_slots(self, var_list): for v in var_list: with ops.colocate_with(v): dtype = v.dtype.base_dtype if v.get_shape().is_fully_defined(): init = init_ops.constant_initializer(self._initial_accumulator_value, dtype=dtype) else: # Use a Tensor instead of initializer if variable does not have static # shape. init_constant = gen_array_ops.fill(array_ops.shape(v), self._initial_accumulator_value) init = math_ops.cast(init_constant, dtype) self._get_or_make_slot_with_initializer(v, init, v.get_shape(), dtype, "accumulator", self._name) def _prepare(self): learning_rate = self._call_if_callable(self._learning_rate) self._learning_rate_tensor = ops.convert_to_tensor( learning_rate, name="learning_rate") def _apply_dense(self, grad, var): acc = self.get_slot(var, "accumulator") return training_ops.apply_adagrad( var, acc, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), grad, use_locking=self._use_locking) def _resource_apply_dense(self, grad, var): acc = self.get_slot(var, "accumulator") return training_ops.resource_apply_adagrad( var.handle, acc.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype), grad, use_locking=self._use_locking) def _apply_sparse(self, grad, var): acc = self.get_slot(var, "accumulator") return training_ops.sparse_apply_adagrad( var, acc, math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype), grad.values, grad.indices, use_locking=self._use_locking) def _resource_apply_sparse(self, grad, var, indices): acc = self.get_slot(var, "accumulator") return training_ops.resource_sparse_apply_adagrad( var.handle, acc.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype), grad, indices, use_locking=self._use_locking)