# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================== """Lookup operations.""" # pylint: disable=g-bad-name from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import six from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gen_lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import string_ops # go/tf-wildcard-import # pylint: disable=wildcard-import from tensorflow.python.ops.gen_lookup_ops import * # pylint: enable=wildcard-import from tensorflow.python.util import compat from tensorflow.python.util.deprecation import deprecated from tensorflow.python.util.tf_export import tf_export @tf_export("initialize_all_tables") @deprecated(None, "Use `tf.tables_initializer` instead.") def initialize_all_tables(name="init_all_tables"): """Returns an Op that initializes all tables of the default graph. Args: name: Optional name for the initialization op. Returns: An Op that initializes all tables. Note that if there are not tables the returned Op is a NoOp. """ return tables_initializer(name) @tf_export("tables_initializer") def tables_initializer(name="init_all_tables"): """Returns an Op that initializes all tables of the default graph. Args: name: Optional name for the initialization op. Returns: An Op that initializes all tables. Note that if there are not tables the returned Op is a NoOp. """ initializers = ops.get_collection(ops.GraphKeys.TABLE_INITIALIZERS) if initializers: return control_flow_ops.group(*initializers, name=name) return control_flow_ops.no_op(name=name) def _check_table_dtypes(table, key_dtype, value_dtype): """Check that the given key_dtype and value_dtype matches the table dtypes. Args: table: The table to check types against to. key_dtype: The key data type to check. value_dtype: The value data type to check. Raises: TypeError: when 'key_dtype' or 'value_dtype' doesn't match the table data types. """ if key_dtype.base_dtype != table.key_dtype: raise TypeError("Invalid key dtype, expected %s but got %s." % (table.key_dtype, key_dtype)) if value_dtype.base_dtype != table.value_dtype: raise TypeError("Invalid value dtype, expected %s but got %s." % (table.value_dtype, value_dtype)) class LookupInterface(object): """Represent a lookup table that persists across different steps.""" def __init__(self, key_dtype, value_dtype, name): """Construct a lookup table interface. Args: key_dtype: The table key type. value_dtype: The table value type. name: A name for the operation (optional). """ self._key_dtype = dtypes.as_dtype(key_dtype) self._value_dtype = dtypes.as_dtype(value_dtype) self._name = name @property def key_dtype(self): """The table key dtype.""" return self._key_dtype @property def value_dtype(self): """The table value dtype.""" return self._value_dtype @property def name(self): """The name of the table.""" return self._name @property def init(self): """The table initialization op.""" raise NotImplementedError def size(self, name=None): """Compute the number of elements in this table.""" raise NotImplementedError def lookup(self, keys, name=None): """Looks up `keys` in a table, outputs the corresponding values.""" raise NotImplementedError class InitializableLookupTableBase(LookupInterface): """Initializable lookup table interface. An initializable lookup tables persist across different steps. """ def __init__(self, table_ref, default_value, initializer): """Construct a table object from a table reference. If requires a table initializer object (subclass of `TableInitializerBase`). It provides the table key and value types, as well as the op to initialize the table. The caller is responsible to execute the initialization op. Args: table_ref: The table reference, i.e. the output of the lookup table ops. default_value: The value to use if a key is missing in the table. initializer: The table initializer to use. """ if context.executing_eagerly(): name = context.context().scope_name else: name = table_ref.op.name.split("/")[-1] super(InitializableLookupTableBase, self).__init__(initializer.key_dtype, initializer.value_dtype, name) self._table_ref = table_ref self._default_value = ops.convert_to_tensor( default_value, dtype=self._value_dtype) self._default_value.get_shape().merge_with(tensor_shape.scalar()) self._init = initializer.initialize(self) @property def table_ref(self): """Get the underlying table reference.""" return self._table_ref @property def default_value(self): """The default value of the table.""" return self._default_value @property def init(self): """The table initialization op.""" return self._init def size(self, name=None): """Compute the number of elements in this table. Args: name: A name for the operation (optional). Returns: A scalar tensor containing the number of elements in this table. """ with ops.name_scope(name, "%s_Size" % self._name, [self._table_ref]) as scope: return gen_lookup_ops.lookup_table_size_v2(self._table_ref, name=scope) def lookup(self, keys, name=None): """Looks up `keys` in a table, outputs the corresponding values. The `default_value` is used for keys not present in the table. Args: keys: Keys to look up. May be either a `SparseTensor` or dense `Tensor`. name: A name for the operation (optional). Returns: A `SparseTensor` if keys are sparse, otherwise a dense `Tensor`. Raises: TypeError: when `keys` or `default_value` doesn't match the table data types. """ key_tensor = keys if isinstance(keys, sparse_tensor.SparseTensor): key_tensor = keys.values if keys.dtype.base_dtype != self._key_dtype: raise TypeError("Signature mismatch. Keys must be dtype %s, got %s." % (self._key_dtype, keys.dtype)) with ops.name_scope(name, "%s_Lookup" % self._name, (self._table_ref, key_tensor, self._default_value)) as scope: values = gen_lookup_ops.lookup_table_find_v2( self._table_ref, key_tensor, self._default_value, name=scope) values.set_shape(key_tensor.get_shape()) if isinstance(keys, sparse_tensor.SparseTensor): return sparse_tensor.SparseTensor(keys.indices, values, keys.dense_shape) else: return values class HashTable(InitializableLookupTableBase): """A generic hash table implementation. Example usage: ```python table = tf.HashTable( tf.KeyValueTensorInitializer(keys, values), -1) out = table.lookup(input_tensor) table.init.run() print(out.eval()) ``` """ def __init__(self, initializer, default_value, shared_name=None, name=None): """Creates a non-initialized `HashTable` object. Creates a table, the type of its keys and values are specified by the initializer. Before using the table you will have to initialize it. After initialization the table will be immutable. Args: initializer: The table initializer to use. See `HashTable` kernel for supported key and value types. default_value: The value to use if a key is missing in the table. shared_name: If non-empty, this table will be shared under the given name across multiple sessions. name: A name for the operation (optional). Returns: A `HashTable` object. """ with ops.name_scope(name, "hash_table", (initializer, default_value)) as scope: table_ref = gen_lookup_ops.hash_table_v2( shared_name=shared_name, key_dtype=initializer.key_dtype, value_dtype=initializer.value_dtype, name=scope) super(HashTable, self).__init__(table_ref, default_value, initializer) self._value_shape = self._default_value.get_shape() def export(self, name=None): """Returns tensors of all keys and values in the table. Args: name: A name for the operation (optional). Returns: A pair of tensors with the first tensor containing all keys and the second tensors containing all values in the table. """ with ops.name_scope(name, "%s_Export" % self._name, [self._table_ref]) as name: with ops.colocate_with(self._table_ref): exported_keys, exported_values = gen_lookup_ops.lookup_table_export_v2( self._table_ref, self._key_dtype, self._value_dtype, name=name) exported_values.set_shape(exported_keys.get_shape().concatenate( self._value_shape)) return exported_keys, exported_values class TableInitializerBase(object): """Base class for lookup table initializers.""" def __init__(self, key_dtype, value_dtype): """Construct a table initializer object. Args: key_dtype: Type of the table keys. value_dtype: Type of the table values. """ self._key_dtype = dtypes.as_dtype(key_dtype) self._value_dtype = dtypes.as_dtype(value_dtype) @property def key_dtype(self): """The expected table key dtype.""" return self._key_dtype @property def value_dtype(self): """The expected table value dtype.""" return self._value_dtype def initialize(self, table): """Returns the table initialization op.""" raise NotImplementedError class KeyValueTensorInitializer(TableInitializerBase): """Table initializers given `keys` and `values` tensors.""" def __init__(self, keys, values, key_dtype=None, value_dtype=None, name=None): """Constructs a table initializer object based on keys and values tensors. Args: keys: The tensor for the keys. values: The tensor for the values. key_dtype: The `keys` data type. Used when `keys` is a python array. value_dtype: The `values` data type. Used when `values` is a python array. name: A name for the operation (optional). """ with ops.name_scope(name, "key_value_init", [keys, values]) as scope: self._keys = ops.convert_to_tensor(keys, dtype=key_dtype, name="keys") self._values = ops.convert_to_tensor( values, dtype=value_dtype, name="values") self._name = scope super(KeyValueTensorInitializer, self).__init__(self._keys.dtype, self._values.dtype) def initialize(self, table): """Initializes the given `table` with `keys` and `values` tensors. Args: table: The table to initialize. Returns: The operation that initializes the table. Raises: TypeError: when the keys and values data types do not match the table key and value data types. """ _check_table_dtypes(table, self._keys.dtype, self._values.dtype) with ops.name_scope( self._name, values=(table.table_ref, self._keys, self._values)) as scope: if context.executing_eagerly(): # Ensure a unique name when eager execution is enabled to avoid spurious # sharing issues. scope += str(ops.uid()) init_op = gen_lookup_ops.initialize_table_v2( table.table_ref, self._keys, self._values, name=scope) ops.add_to_collection(ops.GraphKeys.TABLE_INITIALIZERS, init_op) return init_op class TextFileIndex(object): WHOLE_LINE = -2 LINE_NUMBER = -1 class TextFileInitializer(TableInitializerBase): """Table initializers from a text file. This initializer assigns one entry in the table for each line in the file. The key and value type of the table to initialize is given by `key_dtype` and `value_dtype`. The key and value content to get from each line is specified by the `key_index` and `value_index`. * `TextFileIndex.LINE_NUMBER` means use the line number starting from zero, expects data type int64. * `TextFileIndex.WHOLE_LINE` means use the whole line content, expects data type string. * A value `>=0` means use the index (starting at zero) of the split line based on `delimiter`. For example if we have a file with the following content: ``` emerson 10 lake 20 palmer 30 ``` The following snippet initializes a table with the first column as keys and second column as values: * `emerson -> 10` * `lake -> 20` * `palmer -> 30` ```python table = tf.contrib.lookup.HashTable(tf.contrib.lookup.TextFileInitializer( "test.txt", tf.string, 0, tf.int64, 1, delimiter=" "), -1) ... table.init.run() ``` Similarly to initialize the whole line as keys and the line number as values. * `emerson 10 -> 0` * `lake 20 -> 1` * `palmer 30 -> 2` ```python table = tf.contrib.lookup.HashTable(tf.contrib.lookup.TextFileInitializer( "test.txt", tf.string, tf.contrib.lookup.TextFileIndex.WHOLE_LINE, tf.int64, tf.contrib.lookup.TextFileIndex.LINE_NUMBER, delimiter=" "), -1) ... table.init.run() ``` """ def __init__(self, filename, key_dtype, key_index, value_dtype, value_index, vocab_size=None, delimiter="\t", name=None): """Constructs a table initializer object to populate from a text file. It generates one key-value pair per line. The type of table key and value are specified by `key_dtype` and `value_dtype`, respectively. Similarly the content of the key and value are specified by the key_index and value_index. - TextFileIndex.LINE_NUMBER means use the line number starting from zero, expects data type int64. - TextFileIndex.WHOLE_LINE means use the whole line content, expects data type string. - A value >=0 means use the index (starting at zero) of the split line based on `delimiter`. Args: filename: The filename of the text file to be used for initialization. The path must be accessible from wherever the graph is initialized (eg. trainer or eval workers). The filename may be a scalar `Tensor`. key_dtype: The `key` data type. key_index: the index that represents information of a line to get the table 'key' values from. value_dtype: The `value` data type. value_index: the index that represents information of a line to get the table 'value' values from.' vocab_size: The number of elements in the file, if known. delimiter: The delimiter to separate fields in a line. name: A name for the operation (optional). Raises: ValueError: when the filename is empty, or when the table key and value data types do not match the expected data types. """ if not isinstance(filename, ops.Tensor) and not filename: raise ValueError("Filename required for %s." % name) key_dtype = dtypes.as_dtype(key_dtype) value_dtype = dtypes.as_dtype(value_dtype) if key_index < -2: raise ValueError("Invalid key index %s." % (key_index)) if key_index == TextFileIndex.LINE_NUMBER and key_dtype != dtypes.int64: raise ValueError("Signature mismatch. Keys must be dtype %s, got %s." % (dtypes.int64, key_dtype)) if ((key_index == TextFileIndex.WHOLE_LINE) and (not key_dtype.is_integer) and (key_dtype != dtypes.string)): raise ValueError( "Signature mismatch. Keys must be integer or string, got %s." % key_dtype) if value_index < -2: raise ValueError("Invalid value index %s." % (value_index)) if value_index == TextFileIndex.LINE_NUMBER and value_dtype != dtypes.int64: raise ValueError("Signature mismatch. Values must be dtype %s, got %s." % (dtypes.int64, value_dtype)) if value_index == TextFileIndex.WHOLE_LINE and value_dtype != dtypes.string: raise ValueError("Signature mismatch. Values must be dtype %s, got %s." % (dtypes.string, value_dtype)) if (vocab_size is not None) and (vocab_size <= 0): raise ValueError("Invalid vocab_size %s." % vocab_size) self._filename = filename self._key_index = key_index self._value_index = value_index self._vocab_size = vocab_size self._delimiter = delimiter self._name = name super(TextFileInitializer, self).__init__(key_dtype, value_dtype) def initialize(self, table): """Initializes the table from a text file. Args: table: The table to be initialized. Returns: The operation that initializes the table. Raises: TypeError: when the keys and values data types do not match the table key and value data types. """ _check_table_dtypes(table, self.key_dtype, self.value_dtype) with ops.name_scope(self._name, "text_file_init", (table.table_ref,)) as scope: filename = ops.convert_to_tensor( self._filename, dtypes.string, name="asset_filepath") init_op = gen_lookup_ops.initialize_table_from_text_file_v2( table.table_ref, filename, self._key_index, self._value_index, -1 if self._vocab_size is None else self._vocab_size, self._delimiter, name=scope) ops.add_to_collection(ops.GraphKeys.TABLE_INITIALIZERS, init_op) # If the filename tensor is anything other than a string constant (e.g., if # it is a placeholder) then it does not make sense to track it as an asset. if not context.executing_eagerly() and constant_op.is_constant(filename): ops.add_to_collection(ops.GraphKeys.ASSET_FILEPATHS, filename) return init_op class TextFileStringTableInitializer(TextFileInitializer): """Table initializer for `int64` IDs to string tables from a text file.""" def __init__(self, filename, key_column_index=TextFileIndex.LINE_NUMBER, value_column_index=TextFileIndex.WHOLE_LINE, vocab_size=None, delimiter="\t", name="text_file_string_table_init"): """Constructs an initializer for an id-to-string table from a text file. It populates a table that its key and value types are int64 and string, respectively. It generates one key-value pair per line. The content of the key and value are specified by `key_column_index` and `value_column_index`. - TextFileIndex.LINE_NUMBER means use the line number starting from zero, expects data type int64. - TextFileIndex.WHOLE_LINE means use the whole line content, expects data type string. - A value >=0 means use the index (starting at zero) of the split line based on `delimiter`. Args: filename: The filename of the text file to be used for initialization. The path must be accessible from wherever the graph is initialized (eg. trainer or eval workers). The filename may be a scalar `Tensor`. key_column_index: The column index from the text file to get the keys from. The default is to use the line number, starting from zero. value_column_index: The column index from the text file to get the values from. The default is to use the whole line content. vocab_size: The number of elements in the file, if known. delimiter: The delimiter to separate fields in a line. name: Optional name for the op. Raises: TypeError: when the filename is empty, or when the table key and value data types do not match the expected data types. """ super(TextFileStringTableInitializer, self).__init__( filename, dtypes.int64, key_column_index, dtypes.string, value_column_index, vocab_size=vocab_size, delimiter=delimiter, name=name) class TextFileIdTableInitializer(TextFileInitializer): """Table initializer for string to `int64` IDs tables from a text file.""" def __init__(self, filename, key_column_index=TextFileIndex.WHOLE_LINE, value_column_index=TextFileIndex.LINE_NUMBER, vocab_size=None, delimiter="\t", name="text_file_id_table_init", key_dtype=dtypes.string): """Constructs an initializer for an string-to-id table from a text file. It populates a table that its key and value types are string and int64, respectively. It generates one key-value pair per line. The content of the key and value are specified by the key_index and value_index. - TextFileIndex.LINE_NUMBER means use the line number starting from zero, expects data type int64. - TextFileIndex.WHOLE_LINE means use the whole line content, expects data type string. - A value >=0 means use the index (starting at zero) of the split line based on `delimiter`. Args: filename: The filename of the text file to be used for initialization. The path must be accessible from wherever the graph is initialized (eg. trainer or eval workers). The filename may be a scalar `Tensor`. key_column_index: The column index from the text file to get the `key` values from. The default is to use the whole line content. value_column_index: The column index from the text file to get the `value` values from. The default is to use the line number, starting from zero. vocab_size: The number of elements in the file, if known. delimiter: The delimiter to separate fields in a line. name: Optional name for the op. key_dtype: The `key` data type. Raises: TypeError: when the filename is empty, or when the table key and value data types do not match the expected data types. """ super(TextFileIdTableInitializer, self).__init__( filename, key_dtype, key_column_index, dtypes.int64, value_column_index, vocab_size=vocab_size, delimiter=delimiter, name=name) class HasherSpec(collections.namedtuple("HasherSpec", ["hasher", "key"])): """A structure for the spec of the hashing function to use for hash buckets. `hasher` is the name of the hashing function to use (eg. "fasthash", "stronghash"). `key` is optional and specify the key to use for the hash function if supported, currently only used by a strong hash. Fields: hasher: The hasher name to use. key: The key to be used by the hashing function, if required. """ __slots__ = () FastHashSpec = HasherSpec("fasthash", None) # pylint: disable=invalid-name class StrongHashSpec(HasherSpec): """A structure to specify a key of the strong keyed hash spec. The strong hash requires a `key`, which is a list of 2 unsigned integer numbers. These should be non-zero; random numbers generated from random.org would be a fine choice. Fields: key: The key to be used by the keyed hashing function. """ __slots__ = () def __new__(cls, key): if len(key) != 2: raise ValueError("key must have size 2, got %s." % len(key)) if not isinstance(key[0], compat.integral_types) or not isinstance( key[1], compat.integral_types): raise TypeError("Invalid key %s. Must be unsigned integer values." % key) return super(cls, StrongHashSpec).__new__(cls, "stronghash", key) def _as_string(tensor): if dtypes.string == tensor.dtype.base_dtype: return tensor return string_ops.as_string(tensor) class IdTableWithHashBuckets(LookupInterface): """String to Id table wrapper that assigns out-of-vocabulary keys to buckets. For example, if an instance of `IdTableWithHashBuckets` is initialized with a string-to-id table that maps: * `emerson -> 0` * `lake -> 1` * `palmer -> 2` The `IdTableWithHashBuckets` object will performs the following mapping: * `emerson -> 0` * `lake -> 1` * `palmer -> 2` * ` -> bucket_id`, where bucket_id will be between `3` and `3 + num_oov_buckets - 1`, calculated by: `hash() % num_oov_buckets + vocab_size` If input_tensor is `["emerson", "lake", "palmer", "king", "crimson"]`, the lookup result is `[0, 1, 2, 4, 7]`. If `table` is None, only out-of-vocabulary buckets are used. Example usage: ```python num_oov_buckets = 3 input_tensor = tf.constant(["emerson", "lake", "palmer", "king", "crimnson"]) table = tf.IdTableWithHashBuckets( tf.HashTable(tf.TextFileIdTableInitializer(filename), default_value), num_oov_buckets) out = table.lookup(input_tensor). table.init.run() print(out.eval()) ``` The hash function used for generating out-of-vocabulary buckets ID is handled by `hasher_spec`. """ def __init__(self, table, num_oov_buckets, hasher_spec=FastHashSpec, name=None, key_dtype=None): """Construct a `IdTableWithHashBuckets` object. Args: table: Table that maps `tf.string` or `tf.int64` keys to `tf.int64` ids. num_oov_buckets: Number of buckets to use for out-of-vocabulary keys. hasher_spec: A `HasherSpec` to specify the hash function to use for assignation of out-of-vocabulary buckets (optional). name: A name for the operation (optional). key_dtype: Data type of keys passed to `lookup`. Defaults to `table.key_dtype` if `table` is specified, otherwise `tf.string`. Must be string or integer, and must be castable to `table.key_dtype`. Raises: ValueError: when `table` in None and `num_oov_buckets` is not positive. TypeError: when `hasher_spec` is invalid. """ # If a name ends with a '/' it is a "name scope", remove all trailing '/' # characters to use as table name. if name: name = name.rstrip("/") if table: if key_dtype is None: key_dtype = table.key_dtype supported_table_key_dtypes = (dtypes.int64, dtypes.string) if table.key_dtype not in supported_table_key_dtypes: raise TypeError("Invalid key dtype, expected one of %s, but got %s." % (supported_table_key_dtypes, key_dtype)) if table.key_dtype.is_integer != key_dtype.is_integer: raise TypeError("Invalid key dtype, expected %s but got %s." % ("integer" if key_dtype.is_integer else "non-integer", table.key_dtype)) if table.value_dtype != dtypes.int64: raise TypeError("Invalid value dtype, expected %s but got %s." % (dtypes.int64, table.value_dtype)) self._table = table name = name or self._table.name else: if num_oov_buckets <= 0: raise ValueError("oov_buckets must be > 0 if no table is supplied.") key_dtype = dtypes.string if key_dtype is None else key_dtype self._table = None name = name or "hash_bucket" if (not key_dtype.is_integer) and (dtypes.string != key_dtype): raise TypeError( "Invalid key_dtype, expected integer or string, got %s." % key_dtype) self._num_oov_buckets = num_oov_buckets if not isinstance(hasher_spec, HasherSpec): raise TypeError( "hasher_spec must be of type HasherSpec, got %s" % hasher_spec) self._hasher_spec = hasher_spec super(IdTableWithHashBuckets, self).__init__(key_dtype, dtypes.int64, name.split("/")[-1]) @property def init(self): """The table initialization op.""" if self._table: return self._table.init with ops.name_scope(None, "init"): return control_flow_ops.no_op() @property def table_ref(self): """Returns the table_ref of the underlying table, if one exists. Only use the table_ref directly if you know what you are doing. The table_ref does not have the "hash bucket" functionality, as that is provided by this class. One possible use of the table_ref is subtokenization, i.e. ops which dynamically decompose tokens into subtokens based on the contents of the table_ref. Returns: the underlying table_ref, or None if there is no underlying table """ if self._table is not None: return self._table.table_ref return None def size(self, name=None): """Compute the number of elements in this table.""" with ops.name_scope(name, "%s_Size" % self.name) as scope: if self._table: tsize = self._table.size(scope) else: tsize = ops.convert_to_tensor(0, dtype=dtypes.int64) return tsize + self._num_oov_buckets def _get_string_to_hash_bucket_fn(self, hasher_spec): """Returns the string_to_hash_bucket op to use based on `hasher_spec`.""" if not isinstance(hasher_spec, HasherSpec): raise TypeError("hasher_spec must be of type HasherSpec %s" % hasher_spec) if hasher_spec.hasher == "fasthash": return string_ops.string_to_hash_bucket_fast if hasher_spec.hasher == "legacy": return string_ops.string_to_hash_bucket if hasher_spec.hasher == "stronghash": return functools.partial( string_ops.string_to_hash_bucket_strong, key=hasher_spec.key) raise ValueError("Unknown hasher %s" % hasher_spec.hasher) def lookup(self, keys, name=None): """Looks up `keys` in the table, outputs the corresponding values. It assigns out-of-vocabulary keys to buckets based in their hashes. Args: keys: Keys to look up. May be either a `SparseTensor` or dense `Tensor`. name: Optional name for the op. Returns: A `SparseTensor` if keys are sparse, otherwise a dense `Tensor`. Raises: TypeError: when `keys` doesn't match the table key data type. """ if keys.dtype.base_dtype != self._key_dtype: raise TypeError("Signature mismatch. Keys must be dtype %s, got %s." % (self._key_dtype, keys.dtype)) values = keys if isinstance(keys, sparse_tensor.SparseTensor): values = keys.values if self._table and (self._table.key_dtype.base_dtype == dtypes.int64): values = math_ops.to_int64(values) if self._num_oov_buckets == 0: ids = self._table.lookup(values, name=name) else: # TODO(yleon): Consider moving this functionality to its own kernel. with ops.name_scope(name, "%s_Lookup" % self.name) as scope: str_to_hash_bucket = self._get_string_to_hash_bucket_fn( self._hasher_spec) buckets = str_to_hash_bucket( _as_string(values), num_buckets=self._num_oov_buckets, name="hash_bucket") if self._table: ids = self._table.lookup(values) buckets = math_ops.add(buckets, self._table.size()) is_id_non_default = math_ops.not_equal(ids, self._table.default_value) ids = array_ops.where(is_id_non_default, ids, buckets, name=scope) else: ids = buckets if isinstance(keys, sparse_tensor.SparseTensor): return sparse_tensor.SparseTensor(keys.indices, ids, keys.dense_shape) return ids def index_table_from_file(vocabulary_file=None, num_oov_buckets=0, vocab_size=None, default_value=-1, hasher_spec=FastHashSpec, key_dtype=dtypes.string, name=None, key_column_index=TextFileIndex.WHOLE_LINE, value_column_index=TextFileIndex.LINE_NUMBER, delimiter="\t"): """Returns a lookup table that converts a string tensor into int64 IDs. This operation constructs a lookup table to convert tensor of strings into int64 IDs. The mapping can be initialized from a vocabulary file specified in `vocabulary_file`, where the whole line is the key and the zero-based line number is the ID. Any lookup of an out-of-vocabulary token will return a bucket ID based on its hash if `num_oov_buckets` is greater than zero. Otherwise it is assigned the `default_value`. The bucket ID range is `[vocabulary size, vocabulary size + num_oov_buckets - 1]`. The underlying table must be initialized by calling `tf.tables_initializer.run()` or `table.init.run()` once. To specify multi-column vocabulary files, use key_column_index and value_column_index and delimiter. - TextFileIndex.LINE_NUMBER means use the line number starting from zero, expects data type int64. - TextFileIndex.WHOLE_LINE means use the whole line content, expects data type string. - A value >=0 means use the index (starting at zero) of the split line based on `delimiter`. Sample Usages: If we have a vocabulary file "test.txt" with the following content: ``` emerson lake palmer ``` ```python features = tf.constant(["emerson", "lake", "and", "palmer"]) table = tf.contrib.lookup.index_table_from_file( vocabulary_file="test.txt", num_oov_buckets=1) ids = table.lookup(features) ... tf.tables_initializer().run() ids.eval() ==> [0, 1, 3, 2] # where 3 is the out-of-vocabulary bucket ``` Args: vocabulary_file: The vocabulary filename, may be a constant scalar `Tensor`. num_oov_buckets: The number of out-of-vocabulary buckets. vocab_size: Number of the elements in the vocabulary, if known. default_value: The value to use for out-of-vocabulary feature values. Defaults to -1. hasher_spec: A `HasherSpec` to specify the hash function to use for assignation of out-of-vocabulary buckets. key_dtype: The `key` data type. name: A name for this op (optional). key_column_index: The column index from the text file to get the `key` values from. The default is to use the whole line content. value_column_index: The column index from the text file to get the `value` values from. The default is to use the line number, starting from zero. delimiter: The delimiter to separate fields in a line. Returns: The lookup table to map a `key_dtype` `Tensor` to index `int64` `Tensor`. Raises: ValueError: If `vocabulary_file` is not set. ValueError: If `num_oov_buckets` is negative or `vocab_size` is not greater than zero. """ if vocabulary_file is None or ( isinstance(vocabulary_file, six.string_types) and not vocabulary_file): raise ValueError("vocabulary_file must be specified and must not be empty.") if num_oov_buckets < 0: raise ValueError("num_oov_buckets must be greater or equal than 0, got %d." % num_oov_buckets) if vocab_size is not None and vocab_size < 1: vocab_file_value = vocabulary_file if isinstance(vocabulary_file, ops.Tensor): vocab_file_value = tensor_util.constant_value(vocabulary_file) or "?" raise ValueError("vocab_size must be greater than 0, got %d. " "vocabulary_file: %s" % (vocab_size, vocab_file_value)) if (not key_dtype.is_integer) and (dtypes.string != key_dtype.base_dtype): raise TypeError("Only integer and string keys are supported.") with ops.name_scope(name, "string_to_index") as feat_to_id_scope: table = None shared_name = "" with ops.name_scope(None, "hash_table") as hash_table_scope: if vocab_size: # Keep the shared_name: # ____ shared_name = "hash_table_%s_%d_%s_%s" % (vocabulary_file, vocab_size, key_column_index, value_column_index) else: # Keep the shared_name # ___ shared_name = "hash_table_%s_%s_%s" % (vocabulary_file, key_column_index, value_column_index) init = TextFileIdTableInitializer( vocabulary_file, vocab_size=vocab_size, key_dtype=dtypes.int64 if key_dtype.is_integer else key_dtype, name="table_init", key_column_index=key_column_index, value_column_index=value_column_index, delimiter=delimiter) table = HashTable( init, default_value, shared_name=shared_name, name=hash_table_scope) if num_oov_buckets: table = IdTableWithHashBuckets( table, num_oov_buckets=num_oov_buckets, hasher_spec=hasher_spec, name=feat_to_id_scope, key_dtype=key_dtype) return table def index_table_from_tensor(vocabulary_list, num_oov_buckets=0, default_value=-1, hasher_spec=FastHashSpec, dtype=dtypes.string, name=None): """Returns a lookup table that converts a string tensor into int64 IDs. This operation constructs a lookup table to convert tensor of strings into int64 IDs. The mapping can be initialized from a string `vocabulary_list` 1-D tensor where each element is a key and corresponding index within the tensor is the value. Any lookup of an out-of-vocabulary token will return a bucket ID based on its hash if `num_oov_buckets` is greater than zero. Otherwise it is assigned the `default_value`. The bucket ID range is `[mapping size, mapping size + num_oov_buckets - 1]`. The underlying table must be initialized by calling `tf.tables_initializer.run()` or `table.init.run()` once. Elements in `mapping` cannot have duplicates, otherwise when executing the table initializer op, it will throw a `FailedPreconditionError`. Sample Usages: ```python vocabulary_list = tf.constant(["emerson", "lake", "palmer"]) table = tf.contrib.lookup.index_table_from_tensor( mapping=vocabulary_list, num_oov_buckets=1, default_value=-1) features = tf.constant(["emerson", "lake", "and", "palmer"]) ids = table.lookup(features) ... tf.tables_initializer().run() ids.eval() ==> [0, 1, 4, 2] ``` Args: vocabulary_list: A 1-D `Tensor` that specifies the mapping of keys to indices. The type of this object must be castable to `dtype`. num_oov_buckets: The number of out-of-vocabulary buckets. default_value: The value to use for out-of-vocabulary feature values. Defaults to -1. hasher_spec: A `HasherSpec` to specify the hash function to use for assignment of out-of-vocabulary buckets. dtype: The type of values passed to `lookup`. Only string and integers are supported. name: A name for this op (optional). Returns: The lookup table to map an input `Tensor` to index `int64` `Tensor`. Raises: ValueError: If `mapping` is invalid. ValueError: If `num_oov_buckets` is negative. """ if vocabulary_list is None: raise ValueError("vocabulary_list must be specified.") if num_oov_buckets < 0: raise ValueError("num_oov_buckets must be greater or equal than 0, got %d." % num_oov_buckets) if (not dtype.is_integer) and (dtypes.string != dtype.base_dtype): raise TypeError("Only integer and string keys are supported.") with ops.name_scope(name, "string_to_index") as feat_to_id_scope: keys = ops.convert_to_tensor(vocabulary_list) if keys.dtype.is_integer != dtype.is_integer: raise ValueError("Expected %s, got %s." % ("integer" if dtype.is_integer else "non-integer", keys.dtype)) if (not dtype.is_integer) and (keys.dtype.base_dtype != dtype): raise ValueError("Expected %s, got %s." % (dtype, keys.dtype)) num_elements = array_ops.size(keys) values = math_ops.to_int64(math_ops.range(num_elements)) shared_name = "" with ops.name_scope(None, "hash_table") as hash_table_scope: if context.executing_eagerly(): # Ensure a unique name when eager execution is enabled to avoid spurious # sharing issues. shared_name += str(ops.uid()) table_keys = math_ops.to_int64(keys) if keys.dtype.is_integer else keys init = KeyValueTensorInitializer( table_keys, values, table_keys.dtype.base_dtype, dtypes.int64, name="table_init") table = HashTable( init, default_value, shared_name=shared_name, name=hash_table_scope) if num_oov_buckets: table = IdTableWithHashBuckets( table, num_oov_buckets=num_oov_buckets, hasher_spec=hasher_spec, name=feat_to_id_scope, key_dtype=dtype) return table def index_to_string_table_from_file(vocabulary_file, vocab_size=None, default_value="UNK", name=None, key_column_index=TextFileIndex.LINE_NUMBER, value_column_index=TextFileIndex.WHOLE_LINE, delimiter="\t"): """Returns a lookup table that maps a `Tensor` of indices into strings. This operation constructs a lookup table to map int64 indices into string values. The table is initialized from a vocabulary file specified in `vocabulary_file`, where the whole line is the value and the zero-based line number is the index. Any input which does not have a corresponding index in the vocabulary file (an out-of-vocabulary entry) is assigned the `default_value` The underlying table must be initialized by calling `tf.tables_initializer.run()` or `table.init.run()` once. To specify multi-column vocabulary files, use key_column_index and value_column_index and delimiter. - TextFileIndex.LINE_NUMBER means use the line number starting from zero, expects data type int64. - TextFileIndex.WHOLE_LINE means use the whole line content, expects data type string. - A value >=0 means use the index (starting at zero) of the split line based on `delimiter`. Sample Usages: If we have a vocabulary file "test.txt" with the following content: ``` emerson lake palmer ``` ```python indices = tf.constant([1, 5], tf.int64) table = tf.contrib.lookup.index_to_string_table_from_file( vocabulary_file="test.txt", default_value="UNKNOWN") values = table.lookup(indices) ... tf.tables_initializer().run() values.eval() ==> ["lake", "UNKNOWN"] ``` Args: vocabulary_file: The vocabulary filename, may be a constant scalar `Tensor`. vocab_size: Number of the elements in the vocabulary, if known. default_value: The value to use for out-of-vocabulary indices. name: A name for this op (optional). key_column_index: The column index from the text file to get the `key` values from. The default is to use the line number, starting from zero. value_column_index: The column index from the text file to get the `value` values from. The default is to use the whole line content. delimiter: The delimiter to separate fields in a line. Returns: The lookup table to map a string values associated to a given index `int64` `Tensors`. Raises: ValueError: when `vocabulary_file` is empty. ValueError: when `vocab_size` is invalid. """ if vocabulary_file is None or ( isinstance(vocabulary_file, six.string_types) and not vocabulary_file): raise ValueError("vocabulary_file must be specified and must not be empty.") if vocab_size is not None and vocab_size < 1: raise ValueError("vocab_size must be greater than 0, got %d." % vocab_size) with ops.name_scope(name, "index_to_string") as scope: shared_name = "" if vocab_size: # Keep a shared_name # ____ shared_name = "hash_table_%s_%d_%s_%s" % (vocabulary_file, vocab_size, key_column_index, value_column_index) else: # Keep a shared_name ___ shared_name = "hash_table_%s_%s_%s" % (vocabulary_file, key_column_index, value_column_index) init = TextFileStringTableInitializer( vocabulary_file, vocab_size=vocab_size, name="table_init", key_column_index=key_column_index, value_column_index=value_column_index, delimiter=delimiter) # TODO(yleon): Use a more effienct structure. return HashTable(init, default_value, shared_name=shared_name, name=scope) def index_to_string_table_from_tensor(vocabulary_list, default_value="UNK", name=None): """Returns a lookup table that maps a `Tensor` of indices into strings. This operation constructs a lookup table to map int64 indices into string values. The mapping is initialized from a string `mapping` 1-D `Tensor` where each element is a value and the corresponding index within the tensor is the key. Any input which does not have a corresponding index in 'mapping' (an out-of-vocabulary entry) is assigned the `default_value` The underlying table must be initialized by calling `tf.tables_initializer.run()` or `table.init.run()` once. Elements in `mapping` cannot have duplicates, otherwise when executing the table initializer op, it will throw a `FailedPreconditionError`. Sample Usages: ```python vocabulary_list = tf.constant(["emerson", "lake", "palmer"]) indices = tf.constant([1, 5], tf.int64) table = tf.contrib.lookup.index_to_string_table_from_tensor( vocabulary_list, default_value="UNKNOWN") values = table.lookup(indices) ... tf.tables_initializer().run() values.eval() ==> ["lake", "UNKNOWN"] ``` Args: vocabulary_list: A 1-D string `Tensor` that specifies the strings to map from indices. default_value: The value to use for out-of-vocabulary indices. name: A name for this op (optional). Returns: The lookup table to map a string values associated to a given index `int64` `Tensors`. Raises: ValueError: when `vocabulary_list` is not set. """ if vocabulary_list is None: raise ValueError("vocabulary_list must be specified.") with ops.name_scope(name, "index_to_string") as scope: vocabulary_list = ops.convert_to_tensor(vocabulary_list, dtypes.string) num_elements = array_ops.size(vocabulary_list) keys = math_ops.to_int64(math_ops.range(num_elements)) shared_name = "" init = KeyValueTensorInitializer( keys, vocabulary_list, dtypes.int64, dtypes.string, name="table_init") # TODO(yleon): Use a more effienct structure. return HashTable(init, default_value, shared_name=shared_name, name=scope) ops.NotDifferentiable("LookupTableFind") ops.NotDifferentiable("LookupTableFindV2") ops.NotDifferentiable("LookupTableInsert") ops.NotDifferentiable("LookupTableInsertV2") ops.NotDifferentiable("LookupTableSize") ops.NotDifferentiable("LookupTableSizeV2") ops.NotDifferentiable("HashTable") ops.NotDifferentiable("HashTableV2") ops.NotDifferentiable("InitializeTable") ops.NotDifferentiable("InitializeTableV2") ops.NotDifferentiable("InitializeTableFromTextFile") ops.NotDifferentiable("InitializeTableFromTextFileV2") ops.NotDifferentiable("MutableDenseHashTable") ops.NotDifferentiable("MutableDenseHashTableV2") ops.NotDifferentiable("MutableHashTable") ops.NotDifferentiable("MutableHashTableV2") ops.NotDifferentiable("MutableHashTableOfTensors") ops.NotDifferentiable("MutableHashTableOfTensorsV2")