# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=g-import-not-at-top """Callbacks: utilities called at certain points during model training. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import deque from collections import Iterable from collections import OrderedDict import csv import json import math import os import time import numpy as np import six from tensorflow.python.keras import backend as K from tensorflow.python.keras.utils.generic_utils import Progbar from tensorflow.python.ops import array_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary as tf_summary from tensorflow.python.util.tf_export import tf_export try: import requests except ImportError: requests = None class CallbackList(object): """Container abstracting a list of callbacks. Arguments: callbacks: List of `Callback` instances. queue_length: Queue length for keeping running statistics over callback execution time. """ def __init__(self, callbacks=None, queue_length=10): callbacks = callbacks or [] self.callbacks = [c for c in callbacks] self.queue_length = queue_length def append(self, callback): self.callbacks.append(callback) def set_params(self, params): for callback in self.callbacks: callback.set_params(params) def set_model(self, model): for callback in self.callbacks: callback.set_model(model) def on_epoch_begin(self, epoch, logs=None): """Called at the start of an epoch. Arguments: epoch: integer, index of epoch. logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_epoch_begin(epoch, logs) self._delta_t_batch = 0. self._delta_ts_batch_begin = deque([], maxlen=self.queue_length) self._delta_ts_batch_end = deque([], maxlen=self.queue_length) def on_epoch_end(self, epoch, logs=None): """Called at the end of an epoch. Arguments: epoch: integer, index of epoch. logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_epoch_end(epoch, logs) def on_batch_begin(self, batch, logs=None): """Called right before processing a batch. Arguments: batch: integer, index of batch within the current epoch. logs: dictionary of logs. """ logs = logs or {} t_before_callbacks = time.time() for callback in self.callbacks: callback.on_batch_begin(batch, logs) self._delta_ts_batch_begin.append(time.time() - t_before_callbacks) delta_t_median = np.median(self._delta_ts_batch_begin) if (self._delta_t_batch > 0. and delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1): logging.warning('Method on_batch_begin() is slow compared ' 'to the batch update (%f). Check your callbacks.', delta_t_median) self._t_enter_batch = time.time() def on_batch_end(self, batch, logs=None): """Called at the end of a batch. Arguments: batch: integer, index of batch within the current epoch. logs: dictionary of logs. """ logs = logs or {} if not hasattr(self, '_t_enter_batch'): self._t_enter_batch = time.time() self._delta_t_batch = time.time() - self._t_enter_batch t_before_callbacks = time.time() for callback in self.callbacks: callback.on_batch_end(batch, logs) self._delta_ts_batch_end.append(time.time() - t_before_callbacks) delta_t_median = np.median(self._delta_ts_batch_end) if (self._delta_t_batch > 0. and (delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1)): logging.warning('Method on_batch_end() is slow compared ' 'to the batch update (%f). Check your callbacks.', delta_t_median) def on_train_begin(self, logs=None): """Called at the beginning of training. Arguments: logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_train_begin(logs) def on_train_end(self, logs=None): """Called at the end of training. Arguments: logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_train_end(logs) def __iter__(self): return iter(self.callbacks) @tf_export('keras.callbacks.Callback') class Callback(object): """Abstract base class used to build new callbacks. Attributes: params: dict. Training parameters (eg. verbosity, batch size, number of epochs...). model: instance of `keras.models.Model`. Reference of the model being trained. The `logs` dictionary that callback methods take as argument will contain keys for quantities relevant to the current batch or epoch. Currently, the `.fit()` method of the `Sequential` model class will include the following quantities in the `logs` that it passes to its callbacks: on_epoch_end: logs include `acc` and `loss`, and optionally include `val_loss` (if validation is enabled in `fit`), and `val_acc` (if validation and accuracy monitoring are enabled). on_batch_begin: logs include `size`, the number of samples in the current batch. on_batch_end: logs include `loss`, and optionally `acc` (if accuracy monitoring is enabled). """ def __init__(self): self.validation_data = None self.model = None def set_params(self, params): self.params = params def set_model(self, model): self.model = model def on_epoch_begin(self, epoch, logs=None): pass def on_epoch_end(self, epoch, logs=None): pass def on_batch_begin(self, batch, logs=None): pass def on_batch_end(self, batch, logs=None): pass def on_train_begin(self, logs=None): pass def on_train_end(self, logs=None): pass @tf_export('keras.callbacks.BaseLogger') class BaseLogger(Callback): """Callback that accumulates epoch averages of metrics. This callback is automatically applied to every Keras model. Arguments: stateful_metrics: Iterable of string names of metrics that should *not* be averaged over an epoch. Metrics in this list will be logged as-is in `on_epoch_end`. All others will be averaged in `on_epoch_end`. """ def __init__(self, stateful_metrics=None): super(BaseLogger, self).__init__() self.stateful_metrics = set(stateful_metrics or []) def on_epoch_begin(self, epoch, logs=None): self.seen = 0 self.totals = {} def on_batch_end(self, batch, logs=None): logs = logs or {} batch_size = logs.get('size', 0) self.seen += batch_size for k, v in logs.items(): if k in self.stateful_metrics: self.totals[k] = v else: if k in self.totals: self.totals[k] += v * batch_size else: self.totals[k] = v * batch_size def on_epoch_end(self, epoch, logs=None): if logs is not None: for k in self.params['metrics']: if k in self.totals: # Make value available to next callbacks. if k in self.stateful_metrics: logs[k] = self.totals[k] else: logs[k] = self.totals[k] / self.seen @tf_export('keras.callbacks.TerminateOnNaN') class TerminateOnNaN(Callback): """Callback that terminates training when a NaN loss is encountered. """ def on_batch_end(self, batch, logs=None): logs = logs or {} loss = logs.get('loss') if loss is not None: if np.isnan(loss) or np.isinf(loss): print('Batch %d: Invalid loss, terminating training' % (batch)) self.model.stop_training = True @tf_export('keras.callbacks.ProgbarLogger') class ProgbarLogger(Callback): """Callback that prints metrics to stdout. Arguments: count_mode: One of "steps" or "samples". Whether the progress bar should count samples seen or steps (batches) seen. stateful_metrics: Iterable of string names of metrics that should *not* be averaged over an epoch. Metrics in this list will be logged as-is. All others will be averaged over time (e.g. loss, etc). Raises: ValueError: In case of invalid `count_mode`. """ def __init__(self, count_mode='samples', stateful_metrics=None): super(ProgbarLogger, self).__init__() if count_mode == 'samples': self.use_steps = False elif count_mode == 'steps': self.use_steps = True else: raise ValueError('Unknown `count_mode`: ' + str(count_mode)) self.stateful_metrics = set(stateful_metrics or []) def on_train_begin(self, logs=None): self.verbose = self.params['verbose'] self.epochs = self.params['epochs'] def on_epoch_begin(self, epoch, logs=None): if self.verbose: print('Epoch %d/%d' % (epoch + 1, self.epochs)) if self.use_steps: target = self.params['steps'] else: target = self.params['samples'] self.target = target self.progbar = Progbar( target=self.target, verbose=self.verbose, stateful_metrics=self.stateful_metrics) self.seen = 0 def on_batch_begin(self, batch, logs=None): if self.seen < self.target: self.log_values = [] def on_batch_end(self, batch, logs=None): logs = logs or {} batch_size = logs.get('size', 0) if self.use_steps: self.seen += 1 else: self.seen += batch_size for k in self.params['metrics']: if k in logs: self.log_values.append((k, logs[k])) # Skip progbar update for the last batch; # will be handled by on_epoch_end. if self.verbose and self.seen < self.target: self.progbar.update(self.seen, self.log_values) def on_epoch_end(self, epoch, logs=None): logs = logs or {} for k in self.params['metrics']: if k in logs: self.log_values.append((k, logs[k])) if self.verbose: self.progbar.update(self.seen, self.log_values) @tf_export('keras.callbacks.History') class History(Callback): """Callback that records events into a `History` object. This callback is automatically applied to every Keras model. The `History` object gets returned by the `fit` method of models. """ def on_train_begin(self, logs=None): self.epoch = [] self.history = {} def on_epoch_end(self, epoch, logs=None): logs = logs or {} self.epoch.append(epoch) for k, v in logs.items(): self.history.setdefault(k, []).append(v) @tf_export('keras.callbacks.ModelCheckpoint') class ModelCheckpoint(Callback): """Save the model after every epoch. `filepath` can contain named formatting options, which will be filled the value of `epoch` and keys in `logs` (passed in `on_epoch_end`). For example: if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`, then the model checkpoints will be saved with the epoch number and the validation loss in the filename. Arguments: filepath: string, path to save the model file. monitor: quantity to monitor. verbose: verbosity mode, 0 or 1. save_best_only: if `save_best_only=True`, the latest best model according to the quantity monitored will not be overwritten. mode: one of {auto, min, max}. If `save_best_only=True`, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For `val_acc`, this should be `max`, for `val_loss` this should be `min`, etc. In `auto` mode, the direction is automatically inferred from the name of the monitored quantity. save_weights_only: if True, then only the model's weights will be saved (`model.save_weights(filepath)`), else the full model is saved (`model.save(filepath)`). period: Interval (number of epochs) between checkpoints. """ def __init__(self, filepath, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1): super(ModelCheckpoint, self).__init__() self.monitor = monitor self.verbose = verbose self.filepath = filepath self.save_best_only = save_best_only self.save_weights_only = save_weights_only self.period = period self.epochs_since_last_save = 0 if mode not in ['auto', 'min', 'max']: logging.warning('ModelCheckpoint mode %s is unknown, ' 'fallback to auto mode.', mode) mode = 'auto' if mode == 'min': self.monitor_op = np.less self.best = np.Inf elif mode == 'max': self.monitor_op = np.greater self.best = -np.Inf else: if 'acc' in self.monitor or self.monitor.startswith('fmeasure'): self.monitor_op = np.greater self.best = -np.Inf else: self.monitor_op = np.less self.best = np.Inf def on_epoch_end(self, epoch, logs=None): logs = logs or {} self.epochs_since_last_save += 1 if self.epochs_since_last_save >= self.period: self.epochs_since_last_save = 0 filepath = self.filepath.format(epoch=epoch + 1, **logs) if self.save_best_only: current = logs.get(self.monitor) if current is None: logging.warning('Can save best model only with %s available, ' 'skipping.', self.monitor) else: if self.monitor_op(current, self.best): if self.verbose > 0: print('\nEpoch %05d: %s improved from %0.5f to %0.5f,' ' saving model to %s' % (epoch + 1, self.monitor, self.best, current, filepath)) self.best = current if self.save_weights_only: self.model.save_weights(filepath, overwrite=True) else: self.model.save(filepath, overwrite=True) else: if self.verbose > 0: print('\nEpoch %05d: %s did not improve from %0.5f' % (epoch + 1, self.monitor, self.best)) else: if self.verbose > 0: print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath)) if self.save_weights_only: self.model.save_weights(filepath, overwrite=True) else: self.model.save(filepath, overwrite=True) @tf_export('keras.callbacks.EarlyStopping') class EarlyStopping(Callback): """Stop training when a monitored quantity has stopped improving. Arguments: monitor: quantity to be monitored. min_delta: minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. patience: number of epochs with no improvement after which training will be stopped. verbose: verbosity mode. mode: one of {auto, min, max}. In `min` mode, training will stop when the quantity monitored has stopped decreasing; in `max` mode it will stop when the quantity monitored has stopped increasing; in `auto` mode, the direction is automatically inferred from the name of the monitored quantity. baseline: baseline value for the monitored quantity. Training will stop if the model doesn't show improvement over the baseline. """ def __init__(self, monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None): super(EarlyStopping, self).__init__() self.monitor = monitor self.patience = patience self.verbose = verbose self.baseline = baseline self.min_delta = abs(min_delta) self.wait = 0 self.stopped_epoch = 0 if mode not in ['auto', 'min', 'max']: logging.warning('EarlyStopping mode %s is unknown, ' 'fallback to auto mode.', mode) mode = 'auto' if mode == 'min': self.monitor_op = np.less elif mode == 'max': self.monitor_op = np.greater else: if 'acc' in self.monitor: self.monitor_op = np.greater else: self.monitor_op = np.less if self.monitor_op == np.greater: self.min_delta *= 1 else: self.min_delta *= -1 def on_train_begin(self, logs=None): # Allow instances to be re-used self.wait = 0 self.stopped_epoch = 0 if self.baseline is not None: self.best = self.baseline else: self.best = np.Inf if self.monitor_op == np.less else -np.Inf def on_epoch_end(self, epoch, logs=None): current = logs.get(self.monitor) if current is None: logging.warning('Early stopping conditioned on metric `%s` ' 'which is not available. Available metrics are: %s', self.monitor, ','.join(list(logs.keys()))) return if self.monitor_op(current - self.min_delta, self.best): self.best = current self.wait = 0 else: self.wait += 1 if self.wait >= self.patience: self.stopped_epoch = epoch self.model.stop_training = True def on_train_end(self, logs=None): if self.stopped_epoch > 0 and self.verbose > 0: print('Epoch %05d: early stopping' % (self.stopped_epoch + 1)) @tf_export('keras.callbacks.RemoteMonitor') class RemoteMonitor(Callback): """Callback used to stream events to a server. Requires the `requests` library. Events are sent to `root + '/publish/epoch/end/'` by default. Calls are HTTP POST, with a `data` argument which is a JSON-encoded dictionary of event data. If send_as_json is set to True, the content type of the request will be application/json. Otherwise the serialized JSON will be sent within a form. Arguments: root: String; root url of the target server. path: String; path relative to `root` to which the events will be sent. field: String; JSON field under which the data will be stored. The field is used only if the payload is sent within a form (i.e. send_as_json is set to False). headers: Dictionary; optional custom HTTP headers. send_as_json: Boolean; whether the request should be sent as application/json. """ def __init__(self, root='http://localhost:9000', path='/publish/epoch/end/', field='data', headers=None, send_as_json=False): super(RemoteMonitor, self).__init__() self.root = root self.path = path self.field = field self.headers = headers self.send_as_json = send_as_json def on_epoch_end(self, epoch, logs=None): if requests is None: raise ImportError('RemoteMonitor requires the `requests` library.') logs = logs or {} send = {} send['epoch'] = epoch for k, v in logs.items(): send[k] = v try: if self.send_as_json: requests.post(self.root + self.path, json=send, headers=self.headers) else: requests.post( self.root + self.path, {self.field: json.dumps(send)}, headers=self.headers) except requests.exceptions.RequestException: logging.warning('Warning: could not reach RemoteMonitor ' 'root server at ' + str(self.root)) @tf_export('keras.callbacks.LearningRateScheduler') class LearningRateScheduler(Callback): """Learning rate scheduler. Arguments: schedule: a function that takes an epoch index as input (integer, indexed from 0) and returns a new learning rate as output (float). verbose: int. 0: quiet, 1: update messages. """ def __init__(self, schedule, verbose=0): super(LearningRateScheduler, self).__init__() self.schedule = schedule self.verbose = verbose def on_epoch_begin(self, epoch, logs=None): if not hasattr(self.model.optimizer, 'lr'): raise ValueError('Optimizer must have a "lr" attribute.') try: # new API lr = float(K.get_value(self.model.optimizer.lr)) lr = self.schedule(epoch, lr) except TypeError: # Support for old API for backward compatibility lr = self.schedule(epoch) if not isinstance(lr, (float, np.float32, np.float64)): raise ValueError('The output of the "schedule" function ' 'should be float.') K.set_value(self.model.optimizer.lr, lr) if self.verbose > 0: print('\nEpoch %05d: LearningRateScheduler reducing learning ' 'rate to %s.' % (epoch + 1, lr)) @tf_export('keras.callbacks.TensorBoard') class TensorBoard(Callback): # pylint: disable=line-too-long """Tensorboard basic visualizations. This callback writes a log for TensorBoard, which allows you to visualize dynamic graphs of your training and test metrics, as well as activation histograms for the different layers in your model. TensorBoard is a visualization tool provided with TensorFlow. If you have installed TensorFlow with pip, you should be able to launch TensorBoard from the command line: ```sh tensorboard --logdir=/full_path_to_your_logs ``` You can find more information about TensorBoard [here](https://www.tensorflow.org/get_started/summaries_and_tensorboard). Arguments: log_dir: the path of the directory where to save the log files to be parsed by TensorBoard. histogram_freq: frequency (in epochs) at which to compute activation and weight histograms for the layers of the model. If set to 0, histograms won't be computed. Validation data (or split) must be specified for histogram visualizations. write_graph: whether to visualize the graph in TensorBoard. The log file can become quite large when write_graph is set to True. write_grads: whether to visualize gradient histograms in TensorBoard. `histogram_freq` must be greater than 0. batch_size: size of batch of inputs to feed to the network for histograms computation. write_images: whether to write model weights to visualize as image in TensorBoard. embeddings_freq: frequency (in epochs) at which selected embedding layers will be saved. embeddings_layer_names: a list of names of layers to keep eye on. If None or empty list all the embedding layer will be watched. embeddings_metadata: a dictionary which maps layer name to a file name in which metadata for this embedding layer is saved. See the [details](https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional) about metadata files format. In case if the same metadata file is used for all embedding layers, string can be passed. """ # pylint: enable=line-too-long def __init__(self, log_dir='./logs', histogram_freq=0, batch_size=32, write_graph=True, write_grads=False, write_images=False): super(TensorBoard, self).__init__() self.log_dir = log_dir self.histogram_freq = histogram_freq self.merged = None self.write_graph = write_graph self.write_grads = write_grads self.write_images = write_images self.batch_size = batch_size self._current_batch = 0 # abstracted writer class to be able to stub for testing self._writer_class = tf_summary.FileWriter def set_model(self, model): """Sets Keras model and creates summary ops.""" self.model = model self.sess = K.get_session() # only make histogram summary op if it hasn't already been made if self.histogram_freq and self.merged is None: for layer in self.model.layers: for weight in layer.weights: mapped_weight_name = weight.name.replace(':', '_') tf_summary.histogram(mapped_weight_name, weight) if self.write_images: w_img = array_ops.squeeze(weight) shape = K.int_shape(w_img) if len(shape) == 2: # dense layer kernel case if shape[0] > shape[1]: w_img = array_ops.transpose(w_img) shape = K.int_shape(w_img) w_img = array_ops.reshape(w_img, [1, shape[0], shape[1], 1]) elif len(shape) == 3: # convnet case if K.image_data_format() == 'channels_last': # switch to channels_first to display # every kernel as a separate image w_img = array_ops.transpose(w_img, perm=[2, 0, 1]) shape = K.int_shape(w_img) w_img = array_ops.reshape(w_img, [shape[0], shape[1], shape[2], 1]) elif len(shape) == 1: # bias case w_img = array_ops.reshape(w_img, [1, shape[0], 1, 1]) else: # not possible to handle 3D convnets etc. continue shape = K.int_shape(w_img) assert len(shape) == 4 and shape[-1] in [1, 3, 4] tf_summary.image(mapped_weight_name, w_img) if self.write_grads: for weight in layer.trainable_weights: mapped_weight_name = weight.name.replace(':', '_') grads = model.optimizer.get_gradients(model.total_loss, weight) def is_indexed_slices(grad): return type(grad).__name__ == 'IndexedSlices' grads = [grad.values if is_indexed_slices(grad) else grad for grad in grads] tf_summary.histogram('{}_grad'.format(mapped_weight_name), grads) if hasattr(layer, 'output'): tf_summary.histogram('{}_out'.format(layer.name), layer.output) self.merged = tf_summary.merge_all() if self.write_graph: self.writer = self._writer_class(self.log_dir, self.sess.graph) else: self.writer = self._writer_class(self.log_dir) def _fetch_callback(self, summary): self.writer.add_summary( summary, self._epoch + self._current_val_batch / self._validation_batches) self._current_val_batch += 1 def on_train_begin(self, logs=None): """Checks if histogram summaries can be run.""" if self.histogram_freq: if 'validation_steps' in self.params: self._validation_batches = self.params['validation_steps'] elif self.validation_data: self._validation_batches = math.ceil( self.validation_data[0].shape[0] / self.batch_size) else: raise ValueError('If printing histograms, validation data must be ' 'provided.') if self._validation_batches == 0: raise ValueError( 'If printing histograms, validation data must have length > 0.') def on_epoch_begin(self, epoch, logs=None): """Add histogram op to Model test_function callbacks, reset batch count.""" # check if histogram summary should be run for this epoch if self.histogram_freq and epoch % self.histogram_freq == 0: self._epoch = epoch self._current_val_batch = 0 # add the histogram summary op if it should run this epoch if self.merged not in self.model.test_function.fetches: self.model.test_function.fetches.append(self.merged) self.model.test_function.fetch_callbacks[ self.merged] = self._fetch_callback def on_epoch_end(self, epoch, logs=None): """Checks if summary ops should run next epoch, logs scalar summaries.""" logs = logs or {} # pop the histogram summary op after each epoch if self.histogram_freq: if self.merged in self.model.test_function.fetches: self.model.test_function.fetches.remove(self.merged) if self.merged in self.model.test_function.fetch_callbacks: self.model.test_function.fetch_callbacks.pop(self.merged) for name, value in logs.items(): if name in ['batch', 'size']: continue summary = tf_summary.Summary() summary_value = summary.value.add() summary_value.simple_value = value.item() summary_value.tag = name self.writer.add_summary(summary, epoch) self.writer.flush() def on_train_end(self, logs=None): self.writer.close() @tf_export('keras.callbacks.ReduceLROnPlateau') class ReduceLROnPlateau(Callback): """Reduce learning rate when a metric has stopped improving. Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This callback monitors a quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced. Example: ```python reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001) model.fit(X_train, Y_train, callbacks=[reduce_lr]) ``` Arguments: monitor: quantity to be monitored. factor: factor by which the learning rate will be reduced. new_lr = lr * factor patience: number of epochs with no improvement after which learning rate will be reduced. verbose: int. 0: quiet, 1: update messages. mode: one of {auto, min, max}. In `min` mode, lr will be reduced when the quantity monitored has stopped decreasing; in `max` mode it will be reduced when the quantity monitored has stopped increasing; in `auto` mode, the direction is automatically inferred from the name of the monitored quantity. min_delta: threshold for measuring the new optimum, to only focus on significant changes. cooldown: number of epochs to wait before resuming normal operation after lr has been reduced. min_lr: lower bound on the learning rate. """ def __init__(self, monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', min_delta=1e-4, cooldown=0, min_lr=0, **kwargs): super(ReduceLROnPlateau, self).__init__() self.monitor = monitor if factor >= 1.0: raise ValueError('ReduceLROnPlateau ' 'does not support a factor >= 1.0.') if 'epsilon' in kwargs: min_delta = kwargs.pop('epsilon') logging.warning('`epsilon` argument is deprecated and ' 'will be removed, use `min_delta` instead.') self.factor = factor self.min_lr = min_lr self.min_delta = min_delta self.patience = patience self.verbose = verbose self.cooldown = cooldown self.cooldown_counter = 0 # Cooldown counter. self.wait = 0 self.best = 0 self.mode = mode self.monitor_op = None self._reset() def _reset(self): """Resets wait counter and cooldown counter. """ if self.mode not in ['auto', 'min', 'max']: logging.warning('Learning Rate Plateau Reducing mode %s is unknown, ' 'fallback to auto mode.', self.mode) self.mode = 'auto' if (self.mode == 'min' or (self.mode == 'auto' and 'acc' not in self.monitor)): self.monitor_op = lambda a, b: np.less(a, b - self.min_delta) self.best = np.Inf else: self.monitor_op = lambda a, b: np.greater(a, b + self.min_delta) self.best = -np.Inf self.cooldown_counter = 0 self.wait = 0 def on_train_begin(self, logs=None): self._reset() def on_epoch_end(self, epoch, logs=None): logs = logs or {} logs['lr'] = K.get_value(self.model.optimizer.lr) current = logs.get(self.monitor) if current is None: logging.warning('Reduce LR on plateau conditioned on metric `%s` ' 'which is not available. Available metrics are: %s', self.monitor, ','.join(list(logs.keys()))) else: if self.in_cooldown(): self.cooldown_counter -= 1 self.wait = 0 if self.monitor_op(current, self.best): self.best = current self.wait = 0 elif not self.in_cooldown(): self.wait += 1 if self.wait >= self.patience: old_lr = float(K.get_value(self.model.optimizer.lr)) if old_lr > self.min_lr: new_lr = old_lr * self.factor new_lr = max(new_lr, self.min_lr) K.set_value(self.model.optimizer.lr, new_lr) if self.verbose > 0: print('\nEpoch %05d: ReduceLROnPlateau reducing learning ' 'rate to %s.' % (epoch + 1, new_lr)) self.cooldown_counter = self.cooldown self.wait = 0 def in_cooldown(self): return self.cooldown_counter > 0 @tf_export('keras.callbacks.CSVLogger') class CSVLogger(Callback): """Callback that streams epoch results to a csv file. Supports all values that can be represented as a string, including 1D iterables such as np.ndarray. Example: ```python csv_logger = CSVLogger('training.log') model.fit(X_train, Y_train, callbacks=[csv_logger]) ``` Arguments: filename: filename of the csv file, e.g. 'run/log.csv'. separator: string used to separate elements in the csv file. append: True: append if file exists (useful for continuing training). False: overwrite existing file, """ def __init__(self, filename, separator=',', append=False): self.sep = separator self.filename = filename self.append = append self.writer = None self.keys = None self.append_header = True self.file_flags = 'b' if six.PY2 and os.name == 'nt' else '' super(CSVLogger, self).__init__() def on_train_begin(self, logs=None): if self.append: if os.path.exists(self.filename): with open(self.filename, 'r' + self.file_flags) as f: self.append_header = not bool(len(f.readline())) self.csv_file = open(self.filename, 'a' + self.file_flags) else: self.csv_file = open(self.filename, 'w' + self.file_flags) def on_epoch_end(self, epoch, logs=None): logs = logs or {} def handle_value(k): is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0 if isinstance(k, six.string_types): return k elif isinstance(k, Iterable) and not is_zero_dim_ndarray: return '"[%s]"' % (', '.join(map(str, k))) else: return k if self.keys is None: self.keys = sorted(logs.keys()) if self.model.stop_training: # We set NA so that csv parsers do not fail for this last epoch. logs = dict([(k, logs[k]) if k in logs else (k, 'NA') for k in self.keys]) if not self.writer: class CustomDialect(csv.excel): delimiter = self.sep self.writer = csv.DictWriter( self.csv_file, fieldnames=['epoch'] + self.keys, dialect=CustomDialect) if self.append_header: self.writer.writeheader() row_dict = OrderedDict({'epoch': epoch}) row_dict.update((key, handle_value(logs[key])) for key in self.keys) self.writer.writerow(row_dict) self.csv_file.flush() def on_train_end(self, logs=None): self.csv_file.close() self.writer = None @tf_export('keras.callbacks.LambdaCallback') class LambdaCallback(Callback): r"""Callback for creating simple, custom callbacks on-the-fly. This callback is constructed with anonymous functions that will be called at the appropriate time. Note that the callbacks expects positional arguments, as: - `on_epoch_begin` and `on_epoch_end` expect two positional arguments: `epoch`, `logs` - `on_batch_begin` and `on_batch_end` expect two positional arguments: `batch`, `logs` - `on_train_begin` and `on_train_end` expect one positional argument: `logs` Arguments: on_epoch_begin: called at the beginning of every epoch. on_epoch_end: called at the end of every epoch. on_batch_begin: called at the beginning of every batch. on_batch_end: called at the end of every batch. on_train_begin: called at the beginning of model training. on_train_end: called at the end of model training. Example: ```python # Print the batch number at the beginning of every batch. batch_print_callback = LambdaCallback( on_batch_begin=lambda batch,logs: print(batch)) # Stream the epoch loss to a file in JSON format. The file content # is not well-formed JSON but rather has a JSON object per line. import json json_log = open('loss_log.json', mode='wt', buffering=1) json_logging_callback = LambdaCallback( on_epoch_end=lambda epoch, logs: json_log.write( json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'), on_train_end=lambda logs: json_log.close() ) # Terminate some processes after having finished model training. processes = ... cleanup_callback = LambdaCallback( on_train_end=lambda logs: [ p.terminate() for p in processes if p.is_alive()]) model.fit(..., callbacks=[batch_print_callback, json_logging_callback, cleanup_callback]) ``` """ def __init__(self, on_epoch_begin=None, on_epoch_end=None, on_batch_begin=None, on_batch_end=None, on_train_begin=None, on_train_end=None, **kwargs): super(LambdaCallback, self).__init__() self.__dict__.update(kwargs) if on_epoch_begin is not None: self.on_epoch_begin = on_epoch_begin else: self.on_epoch_begin = lambda epoch, logs: None if on_epoch_end is not None: self.on_epoch_end = on_epoch_end else: self.on_epoch_end = lambda epoch, logs: None if on_batch_begin is not None: self.on_batch_begin = on_batch_begin else: self.on_batch_begin = lambda batch, logs: None if on_batch_end is not None: self.on_batch_end = on_batch_end else: self.on_batch_end = lambda batch, logs: None if on_train_begin is not None: self.on_train_begin = on_train_begin else: self.on_train_begin = lambda logs: None if on_train_end is not None: self.on_train_end = on_train_end else: self.on_train_end = lambda logs: None