# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=line-too-long # pylint: disable=invalid-name # pylint: disable=unused-import """NASNet-A models for Keras. NASNet refers to Neural Architecture Search Network, a family of models that were designed automatically by learning the model architectures directly on the dataset of interest. Here we consider NASNet-A, the highest performance model that was found for the CIFAR-10 dataset, and then extended to ImageNet 2012 dataset, obtaining state of the art performance on CIFAR-10 and ImageNet 2012. Only the NASNet-A models, and their respective weights, which are suited for ImageNet 2012 are provided. The below table describes the performance on ImageNet 2012: -------------------------------------------------------------------------------- Architecture | Top-1 Acc | Top-5 Acc | Multiply-Adds | Params (M) -------------------------------------------------------------------------------- | NASNet-A (4 @ 1056) | 74.0 % | 91.6 % | 564 M | 5.3 | | NASNet-A (6 @ 4032) | 82.7 % | 96.2 % | 23.8 B | 88.9 | -------------------------------------------------------------------------------- References: - [Learning Transferable Architectures for Scalable Image Recognition] (https://arxiv.org/abs/1707.07012) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.python.keras import backend as K from tensorflow.python.keras.applications.imagenet_utils import _obtain_input_shape from tensorflow.python.keras.applications.imagenet_utils import decode_predictions from tensorflow.python.keras.applications.inception_v3 import preprocess_input from tensorflow.python.keras.layers import Activation from tensorflow.python.keras.layers import add from tensorflow.python.keras.layers import AveragePooling2D from tensorflow.python.keras.layers import BatchNormalization from tensorflow.python.keras.layers import concatenate from tensorflow.python.keras.layers import Conv2D from tensorflow.python.keras.layers import Cropping2D from tensorflow.python.keras.layers import Dense from tensorflow.python.keras.layers import GlobalAveragePooling2D from tensorflow.python.keras.layers import GlobalMaxPooling2D from tensorflow.python.keras.layers import Input from tensorflow.python.keras.layers import MaxPooling2D from tensorflow.python.keras.layers import SeparableConv2D from tensorflow.python.keras.layers import ZeroPadding2D from tensorflow.python.keras.models import Model from tensorflow.python.keras.utils import layer_utils from tensorflow.python.keras.utils.data_utils import get_file from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.tf_export import tf_export NASNET_MOBILE_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/NASNet-mobile.h5' NASNET_MOBILE_WEIGHT_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/NASNet-mobile-no-top.h5' NASNET_LARGE_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/NASNet-large.h5' NASNET_LARGE_WEIGHT_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/NASNet-large-no-top.h5' def NASNet(input_shape=None, penultimate_filters=4032, num_blocks=6, stem_block_filters=96, skip_reduction=True, filter_multiplier=2, include_top=True, weights=None, input_tensor=None, pooling=None, classes=1000, default_size=None): """Instantiates a NASNet model. Note that only TensorFlow is supported for now, therefore it only works with the data format `image_data_format='channels_last'` in your Keras config at `~/.keras/keras.json`. Arguments: input_shape: Optional shape tuple, the input shape is by default `(331, 331, 3)` for NASNetLarge and `(224, 224, 3)` for NASNetMobile. It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. penultimate_filters: Number of filters in the penultimate layer. NASNet models use the notation `NASNet (N @ P)`, where: - N is the number of blocks - P is the number of penultimate filters num_blocks: Number of repeated blocks of the NASNet model. NASNet models use the notation `NASNet (N @ P)`, where: - N is the number of blocks - P is the number of penultimate filters stem_block_filters: Number of filters in the initial stem block skip_reduction: Whether to skip the reduction step at the tail end of the network. Set to `False` for CIFAR models. filter_multiplier: Controls the width of the network. - If `filter_multiplier` < 1.0, proportionally decreases the number of filters in each layer. - If `filter_multiplier` > 1.0, proportionally increases the number of filters in each layer. - If `filter_multiplier` = 1, default number of filters from the paper are used at each layer. include_top: Whether to include the fully-connected layer at the top of the network. weights: `None` (random initialization) or `imagenet` (ImageNet weights) input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: Optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. default_size: Specifies the default image size of the model Returns: A Keras model instance. Raises: ValueError: In case of invalid argument for `weights`, invalid input shape or invalid `penultimate_filters` value. RuntimeError: If attempting to run this model with a backend that does not support separable convolutions. """ if K.backend() != 'tensorflow': raise RuntimeError('Only Tensorflow backend is currently supported, ' 'as other backends do not support ' 'separable convolution.') if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as ImageNet with `include_top` ' 'as true, `classes` should be 1000') if (isinstance(input_shape, tuple) and None in input_shape and weights == 'imagenet'): raise ValueError('When specifying the input shape of a NASNet' ' and loading `ImageNet` weights, ' 'the input_shape argument must be static ' '(no None entries). Got: `input_shape=' + str(input_shape) + '`.') if default_size is None: default_size = 331 # Determine proper input shape and default size. input_shape = _obtain_input_shape( input_shape, default_size=default_size, min_size=32, data_format=K.image_data_format(), require_flatten=False, weights=weights) if K.image_data_format() != 'channels_last': logging.warning('The NASNet family of models is only available ' 'for the input data format "channels_last" ' '(width, height, channels). ' 'However your settings specify the default ' 'data format "channels_first" (channels, width, height).' ' You should set `image_data_format="channels_last"` ' 'in your Keras config located at ~/.keras/keras.json. ' 'The model being returned right now will expect inputs ' 'to follow the "channels_last" data format.') K.set_image_data_format('channels_last') old_data_format = 'channels_first' else: old_data_format = None if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor if penultimate_filters % 24 != 0: raise ValueError( 'For NASNet-A models, the value of `penultimate_filters` ' 'needs to be divisible by 24. Current value: %d' % penultimate_filters) channel_dim = 1 if K.image_data_format() == 'channels_first' else -1 filters = penultimate_filters // 24 if not skip_reduction: x = Conv2D( stem_block_filters, (3, 3), strides=(2, 2), padding='valid', use_bias=False, name='stem_conv1', kernel_initializer='he_normal')( img_input) else: x = Conv2D( stem_block_filters, (3, 3), strides=(1, 1), padding='same', use_bias=False, name='stem_conv1', kernel_initializer='he_normal')( img_input) x = BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='stem_bn1')( x) p = None if not skip_reduction: # imagenet / mobile mode x, p = _reduction_a_cell( x, p, filters // (filter_multiplier**2), block_id='stem_1') x, p = _reduction_a_cell( x, p, filters // filter_multiplier, block_id='stem_2') for i in range(num_blocks): x, p = _normal_a_cell(x, p, filters, block_id='%d' % (i)) x, p0 = _reduction_a_cell( x, p, filters * filter_multiplier, block_id='reduce_%d' % (num_blocks)) p = p0 if not skip_reduction else p for i in range(num_blocks): x, p = _normal_a_cell( x, p, filters * filter_multiplier, block_id='%d' % (num_blocks + i + 1)) x, p0 = _reduction_a_cell( x, p, filters * filter_multiplier**2, block_id='reduce_%d' % (2 * num_blocks)) p = p0 if not skip_reduction else p for i in range(num_blocks): x, p = _normal_a_cell( x, p, filters * filter_multiplier**2, block_id='%d' % (2 * num_blocks + i + 1)) x = Activation('relu')(x) if include_top: x = GlobalAveragePooling2D()(x) x = Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input model = Model(inputs, x, name='NASNet') # load weights if weights == 'imagenet': if default_size == 224: # mobile version if include_top: weight_path = NASNET_MOBILE_WEIGHT_PATH model_name = 'nasnet_mobile.h5' else: weight_path = NASNET_MOBILE_WEIGHT_PATH_NO_TOP model_name = 'nasnet_mobile_no_top.h5' weights_file = get_file(model_name, weight_path, cache_subdir='models') model.load_weights(weights_file) elif default_size == 331: # large version if include_top: weight_path = NASNET_LARGE_WEIGHT_PATH model_name = 'nasnet_large.h5' else: weight_path = NASNET_LARGE_WEIGHT_PATH_NO_TOP model_name = 'nasnet_large_no_top.h5' weights_file = get_file(model_name, weight_path, cache_subdir='models') model.load_weights(weights_file) else: raise ValueError('ImageNet weights can only be loaded with NASNetLarge' ' or NASNetMobile') elif weights is not None: model.load_weights(weights) if old_data_format: K.set_image_data_format(old_data_format) return model @tf_export('keras.applications.NASNetLarge', 'keras.applications.nasnet.NASNetLarge') def NASNetLarge(input_shape=None, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000): """Instantiates a NASNet model in ImageNet mode. Note that only TensorFlow is supported for now, therefore it only works with the data format `image_data_format='channels_last'` in your Keras config at `~/.keras/keras.json`. Arguments: input_shape: Optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(331, 331, 3)` for NASNetLarge. It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. include_top: Whether to include the fully-connected layer at the top of the network. weights: `None` (random initialization) or `imagenet` (ImageNet weights) input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: Optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. RuntimeError: If attempting to run this model with a backend that does not support separable convolutions. """ return NASNet( input_shape, penultimate_filters=4032, num_blocks=6, stem_block_filters=96, skip_reduction=False, filter_multiplier=2, include_top=include_top, weights=weights, input_tensor=input_tensor, pooling=pooling, classes=classes, default_size=331) @tf_export('keras.applications.NASNetMobile', 'keras.applications.nasnet.NASNetMobile') def NASNetMobile(input_shape=None, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000): """Instantiates a Mobile NASNet model in ImageNet mode. Note that only TensorFlow is supported for now, therefore it only works with the data format `image_data_format='channels_last'` in your Keras config at `~/.keras/keras.json`. Arguments: input_shape: Optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` for NASNetMobile It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. include_top: Whether to include the fully-connected layer at the top of the network. weights: `None` (random initialization) or `imagenet` (ImageNet weights) input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: Optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. Raises: ValueError: In case of invalid argument for `weights`, or invalid input shape. RuntimeError: If attempting to run this model with a backend that does not support separable convolutions. """ return NASNet( input_shape, penultimate_filters=1056, num_blocks=4, stem_block_filters=32, skip_reduction=False, filter_multiplier=2, include_top=include_top, weights=weights, input_tensor=input_tensor, pooling=pooling, classes=classes, default_size=224) def _separable_conv_block(ip, filters, kernel_size=(3, 3), strides=(1, 1), block_id=None): """Adds 2 blocks of [relu-separable conv-batchnorm]. Arguments: ip: Input tensor filters: Number of output filters per layer kernel_size: Kernel size of separable convolutions strides: Strided convolution for downsampling block_id: String block_id Returns: A Keras tensor """ channel_dim = 1 if K.image_data_format() == 'channels_first' else -1 with K.name_scope('separable_conv_block_%s' % block_id): x = Activation('relu')(ip) x = SeparableConv2D( filters, kernel_size, strides=strides, name='separable_conv_1_%s' % block_id, padding='same', use_bias=False, kernel_initializer='he_normal')( x) x = BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='separable_conv_1_bn_%s' % (block_id))( x) x = Activation('relu')(x) x = SeparableConv2D( filters, kernel_size, name='separable_conv_2_%s' % block_id, padding='same', use_bias=False, kernel_initializer='he_normal')( x) x = BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='separable_conv_2_bn_%s' % (block_id))( x) return x def _adjust_block(p, ip, filters, block_id=None): """Adjusts the input `previous path` to match the shape of the `input`. Used in situations where the output number of filters needs to be changed. Arguments: p: Input tensor which needs to be modified ip: Input tensor whose shape needs to be matched filters: Number of output filters to be matched block_id: String block_id Returns: Adjusted Keras tensor """ channel_dim = 1 if K.image_data_format() == 'channels_first' else -1 img_dim = 2 if K.image_data_format() == 'channels_first' else -2 ip_shape = K.int_shape(ip) if p is not None: p_shape = K.int_shape(p) with K.name_scope('adjust_block'): if p is None: p = ip elif p_shape[img_dim] != ip_shape[img_dim]: with K.name_scope('adjust_reduction_block_%s' % block_id): p = Activation('relu', name='adjust_relu_1_%s' % block_id)(p) p1 = AveragePooling2D( (1, 1), strides=(2, 2), padding='valid', name='adjust_avg_pool_1_%s' % block_id)( p) p1 = Conv2D( filters // 2, (1, 1), padding='same', use_bias=False, name='adjust_conv_1_%s' % block_id, kernel_initializer='he_normal')( p1) p2 = ZeroPadding2D(padding=((0, 1), (0, 1)))(p) p2 = Cropping2D(cropping=((1, 0), (1, 0)))(p2) p2 = AveragePooling2D( (1, 1), strides=(2, 2), padding='valid', name='adjust_avg_pool_2_%s' % block_id)( p2) p2 = Conv2D( filters // 2, (1, 1), padding='same', use_bias=False, name='adjust_conv_2_%s' % block_id, kernel_initializer='he_normal')( p2) p = concatenate([p1, p2], axis=channel_dim) p = BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='adjust_bn_%s' % block_id)( p) elif p_shape[channel_dim] != filters: with K.name_scope('adjust_projection_block_%s' % block_id): p = Activation('relu')(p) p = Conv2D( filters, (1, 1), strides=(1, 1), padding='same', name='adjust_conv_projection_%s' % block_id, use_bias=False, kernel_initializer='he_normal')( p) p = BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='adjust_bn_%s' % block_id)( p) return p def _normal_a_cell(ip, p, filters, block_id=None): """Adds a Normal cell for NASNet-A (Fig. 4 in the paper). Arguments: ip: Input tensor `x` p: Input tensor `p` filters: Number of output filters block_id: String block_id Returns: A Keras tensor """ channel_dim = 1 if K.image_data_format() == 'channels_first' else -1 with K.name_scope('normal_A_block_%s' % block_id): p = _adjust_block(p, ip, filters, block_id) h = Activation('relu')(ip) h = Conv2D( filters, (1, 1), strides=(1, 1), padding='same', name='normal_conv_1_%s' % block_id, use_bias=False, kernel_initializer='he_normal')( h) h = BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='normal_bn_1_%s' % block_id)( h) with K.name_scope('block_1'): x1_1 = _separable_conv_block( h, filters, kernel_size=(5, 5), block_id='normal_left1_%s' % block_id) x1_2 = _separable_conv_block( p, filters, block_id='normal_right1_%s' % block_id) x1 = add([x1_1, x1_2], name='normal_add_1_%s' % block_id) with K.name_scope('block_2'): x2_1 = _separable_conv_block( p, filters, (5, 5), block_id='normal_left2_%s' % block_id) x2_2 = _separable_conv_block( p, filters, (3, 3), block_id='normal_right2_%s' % block_id) x2 = add([x2_1, x2_2], name='normal_add_2_%s' % block_id) with K.name_scope('block_3'): x3 = AveragePooling2D( (3, 3), strides=(1, 1), padding='same', name='normal_left3_%s' % (block_id))( h) x3 = add([x3, p], name='normal_add_3_%s' % block_id) with K.name_scope('block_4'): x4_1 = AveragePooling2D( (3, 3), strides=(1, 1), padding='same', name='normal_left4_%s' % (block_id))( p) x4_2 = AveragePooling2D( (3, 3), strides=(1, 1), padding='same', name='normal_right4_%s' % (block_id))( p) x4 = add([x4_1, x4_2], name='normal_add_4_%s' % block_id) with K.name_scope('block_5'): x5 = _separable_conv_block( h, filters, block_id='normal_left5_%s' % block_id) x5 = add([x5, h], name='normal_add_5_%s' % block_id) x = concatenate( [p, x1, x2, x3, x4, x5], axis=channel_dim, name='normal_concat_%s' % block_id) return x, ip def _reduction_a_cell(ip, p, filters, block_id=None): """Adds a Reduction cell for NASNet-A (Fig. 4 in the paper). Arguments: ip: Input tensor `x` p: Input tensor `p` filters: Number of output filters block_id: String block_id Returns: A Keras tensor """ channel_dim = 1 if K.image_data_format() == 'channels_first' else -1 with K.name_scope('reduction_A_block_%s' % block_id): p = _adjust_block(p, ip, filters, block_id) h = Activation('relu')(ip) h = Conv2D( filters, (1, 1), strides=(1, 1), padding='same', name='reduction_conv_1_%s' % block_id, use_bias=False, kernel_initializer='he_normal')( h) h = BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name='reduction_bn_1_%s' % block_id)( h) with K.name_scope('block_1'): x1_1 = _separable_conv_block( h, filters, (5, 5), strides=(2, 2), block_id='reduction_left1_%s' % block_id) x1_2 = _separable_conv_block( p, filters, (7, 7), strides=(2, 2), block_id='reduction_1_%s' % block_id) x1 = add([x1_1, x1_2], name='reduction_add_1_%s' % block_id) with K.name_scope('block_2'): x2_1 = MaxPooling2D( (3, 3), strides=(2, 2), padding='same', name='reduction_left2_%s' % block_id)( h) x2_2 = _separable_conv_block( p, filters, (7, 7), strides=(2, 2), block_id='reduction_right2_%s' % block_id) x2 = add([x2_1, x2_2], name='reduction_add_2_%s' % block_id) with K.name_scope('block_3'): x3_1 = AveragePooling2D( (3, 3), strides=(2, 2), padding='same', name='reduction_left3_%s' % block_id)( h) x3_2 = _separable_conv_block( p, filters, (5, 5), strides=(2, 2), block_id='reduction_right3_%s' % block_id) x3 = add([x3_1, x3_2], name='reduction_add3_%s' % block_id) with K.name_scope('block_4'): x4 = AveragePooling2D( (3, 3), strides=(1, 1), padding='same', name='reduction_left4_%s' % block_id)( x1) x4 = add([x2, x4]) with K.name_scope('block_5'): x5_1 = _separable_conv_block( x1, filters, (3, 3), block_id='reduction_left4_%s' % block_id) x5_2 = MaxPooling2D( (3, 3), strides=(2, 2), padding='same', name='reduction_right5_%s' % block_id)( h) x5 = add([x5_1, x5_2], name='reduction_add4_%s' % block_id) x = concatenate( [x2, x3, x4, x5], axis=channel_dim, name='reduction_concat_%s' % block_id) return x, ip