# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=invalid-name # pylint: disable=unused-import """DenseNet models for Keras. # Reference paper - [Densely Connected Convolutional Networks] (https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.python.keras import backend as K from tensorflow.python.keras.applications import imagenet_utils from tensorflow.python.keras.applications.imagenet_utils import _obtain_input_shape from tensorflow.python.keras.applications.imagenet_utils import decode_predictions from tensorflow.python.keras.layers import Activation from tensorflow.python.keras.layers import AveragePooling2D from tensorflow.python.keras.layers import BatchNormalization from tensorflow.python.keras.layers import Concatenate from tensorflow.python.keras.layers import Conv2D from tensorflow.python.keras.layers import Dense from tensorflow.python.keras.layers import GlobalAveragePooling2D from tensorflow.python.keras.layers import GlobalMaxPooling2D from tensorflow.python.keras.layers import Input from tensorflow.python.keras.layers import MaxPooling2D from tensorflow.python.keras.layers import ZeroPadding2D from tensorflow.python.keras.models import Model from tensorflow.python.keras.utils import layer_utils from tensorflow.python.keras.utils.data_utils import get_file from tensorflow.python.util.tf_export import tf_export DENSENET121_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet121_weights_tf_dim_ordering_tf_kernels.h5' DENSENET121_WEIGHT_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5' DENSENET169_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet169_weights_tf_dim_ordering_tf_kernels.h5' DENSENET169_WEIGHT_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5' DENSENET201_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet201_weights_tf_dim_ordering_tf_kernels.h5' DENSENET201_WEIGHT_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5' def dense_block(x, blocks, name): """A dense block. Arguments: x: input tensor. blocks: integer, the number of building blocks. name: string, block label. Returns: output tensor for the block. """ for i in range(blocks): x = conv_block(x, 32, name=name + '_block' + str(i + 1)) return x def transition_block(x, reduction, name): """A transition block. Arguments: x: input tensor. reduction: float, compression rate at transition layers. name: string, block label. Returns: output tensor for the block. """ bn_axis = 3 if K.image_data_format() == 'channels_last' else 1 x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + '_bn')(x) x = Activation('relu', name=name + '_relu')(x) x = Conv2D( int(K.int_shape(x)[bn_axis] * reduction), 1, use_bias=False, name=name + '_conv')( x) x = AveragePooling2D(2, strides=2, name=name + '_pool')(x) return x def conv_block(x, growth_rate, name): """A building block for a dense block. Arguments: x: input tensor. growth_rate: float, growth rate at dense layers. name: string, block label. Returns: output tensor for the block. """ bn_axis = 3 if K.image_data_format() == 'channels_last' else 1 x1 = BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + '_0_bn')( x) x1 = Activation('relu', name=name + '_0_relu')(x1) x1 = Conv2D(4 * growth_rate, 1, use_bias=False, name=name + '_1_conv')(x1) x1 = BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + '_1_bn')( x1) x1 = Activation('relu', name=name + '_1_relu')(x1) x1 = Conv2D( growth_rate, 3, padding='same', use_bias=False, name=name + '_2_conv')( x1) x = Concatenate(axis=bn_axis, name=name + '_concat')([x, x1]) return x def DenseNet(blocks, include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the DenseNet architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format='channels_last'` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with TensorFlow, Theano, and CNTK. The data format convention used by the model is the one specified in your Keras config file. Arguments: blocks: numbers of building blocks for the four dense layers. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 inputs channels. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape( input_shape, default_size=224, min_size=221, data_format=K.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor bn_axis = 3 if K.image_data_format() == 'channels_last' else 1 x = ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input) x = Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x) x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')(x) x = Activation('relu', name='conv1/relu')(x) x = ZeroPadding2D(padding=((1, 1), (1, 1)))(x) x = MaxPooling2D(3, strides=2, name='pool1')(x) x = dense_block(x, blocks[0], name='conv2') x = transition_block(x, 0.5, name='pool2') x = dense_block(x, blocks[1], name='conv3') x = transition_block(x, 0.5, name='pool3') x = dense_block(x, blocks[2], name='conv4') x = transition_block(x, 0.5, name='pool4') x = dense_block(x, blocks[3], name='conv5') x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x) if include_top: x = GlobalAveragePooling2D(name='avg_pool')(x) x = Dense(classes, activation='softmax', name='fc1000')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D(name='avg_pool')(x) elif pooling == 'max': x = GlobalMaxPooling2D(name='max_pool')(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. if blocks == [6, 12, 24, 16]: model = Model(inputs, x, name='densenet121') elif blocks == [6, 12, 32, 32]: model = Model(inputs, x, name='densenet169') elif blocks == [6, 12, 48, 32]: model = Model(inputs, x, name='densenet201') else: model = Model(inputs, x, name='densenet') # Load weights. if weights == 'imagenet': if include_top: if blocks == [6, 12, 24, 16]: weights_path = get_file( 'densenet121_weights_tf_dim_ordering_tf_kernels.h5', DENSENET121_WEIGHT_PATH, cache_subdir='models', file_hash='0962ca643bae20f9b6771cb844dca3b0') elif blocks == [6, 12, 32, 32]: weights_path = get_file( 'densenet169_weights_tf_dim_ordering_tf_kernels.h5', DENSENET169_WEIGHT_PATH, cache_subdir='models', file_hash='bcf9965cf5064a5f9eb6d7dc69386f43') elif blocks == [6, 12, 48, 32]: weights_path = get_file( 'densenet201_weights_tf_dim_ordering_tf_kernels.h5', DENSENET201_WEIGHT_PATH, cache_subdir='models', file_hash='7bb75edd58cb43163be7e0005fbe95ef') else: if blocks == [6, 12, 24, 16]: weights_path = get_file( 'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET121_WEIGHT_PATH_NO_TOP, cache_subdir='models', file_hash='4912a53fbd2a69346e7f2c0b5ec8c6d3') elif blocks == [6, 12, 32, 32]: weights_path = get_file( 'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET169_WEIGHT_PATH_NO_TOP, cache_subdir='models', file_hash='50662582284e4cf834ce40ab4dfa58c6') elif blocks == [6, 12, 48, 32]: weights_path = get_file( 'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5', DENSENET201_WEIGHT_PATH_NO_TOP, cache_subdir='models', file_hash='1c2de60ee40562448dbac34a0737e798') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model @tf_export('keras.applications.DenseNet121', 'keras.applications.densenet.DenseNet121') def DenseNet121(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): return DenseNet([6, 12, 24, 16], include_top, weights, input_tensor, input_shape, pooling, classes) @tf_export('keras.applications.DenseNet169', 'keras.applications.densenet.DenseNet169') def DenseNet169(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): return DenseNet([6, 12, 32, 32], include_top, weights, input_tensor, input_shape, pooling, classes) @tf_export('keras.applications.DenseNet201', 'keras.applications.densenet.DenseNet201') def DenseNet201(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): return DenseNet([6, 12, 48, 32], include_top, weights, input_tensor, input_shape, pooling, classes) @tf_export('keras.applications.densenet.preprocess_input') def preprocess_input(x, data_format=None): """Preprocesses a numpy array encoding a batch of images. Arguments: x: a 3D or 4D numpy array consists of RGB values within [0, 255]. data_format: data format of the image tensor. Returns: Preprocessed array. """ return imagenet_utils.preprocess_input(x, data_format, mode='torch') setattr(DenseNet121, '__doc__', DenseNet.__doc__) setattr(DenseNet169, '__doc__', DenseNet.__doc__) setattr(DenseNet201, '__doc__', DenseNet.__doc__)