# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Built-in activation functions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.python.keras import backend as K from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.util.tf_export import tf_export @tf_export('keras.activations.softmax') def softmax(x, axis=-1): """Softmax activation function. Arguments: x : Input tensor. axis: Integer, axis along which the softmax normalization is applied. Returns: Tensor, output of softmax transformation. Raises: ValueError: In case `dim(x) == 1`. """ ndim = K.ndim(x) if ndim == 2: return nn.softmax(x) elif ndim > 2: e = math_ops.exp(x - math_ops.reduce_max(x, axis=axis, keepdims=True)) s = math_ops.reduce_sum(e, axis=axis, keepdims=True) return e / s else: raise ValueError('Cannot apply softmax to a tensor that is 1D. ' 'Received input: %s' % (x,)) @tf_export('keras.activations.elu') def elu(x, alpha=1.0): """Exponential linear unit. Arguments: x: Input tensor. alpha: A scalar, slope of negative section. Returns: The exponential linear activation: `x` if `x > 0` and `alpha * (exp(x)-1)` if `x < 0`. Reference: - [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)](https://arxiv.org/abs/1511.07289) """ return K.elu(x, alpha) @tf_export('keras.activations.selu') def selu(x): """Scaled Exponential Linear Unit (SELU). SELU is equal to: `scale * elu(x, alpha)`, where alpha and scale are pre-defined constants. The values of `alpha` and `scale` are chosen so that the mean and variance of the inputs are preserved between two consecutive layers as long as the weights are initialized correctly (see `lecun_normal` initialization) and the number of inputs is "large enough" (see references for more information). Arguments: x: A tensor or variable to compute the activation function for. Returns: The scaled exponential unit activation: `scale * elu(x, alpha)`. # Note - To be used together with the initialization "lecun_normal". - To be used together with the dropout variant "AlphaDropout". References: - [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) """ alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 return scale * K.elu(x, alpha) @tf_export('keras.activations.softplus') def softplus(x): """Softplus activation function. Arguments: x: Input tensor. Returns: The softplus activation: `log(exp(x) + 1)`. """ return nn.softplus(x) @tf_export('keras.activations.softsign') def softsign(x): """Softsign activation function. Arguments: x: Input tensor. Returns: The softplus activation: `x / (abs(x) + 1)`. """ return nn.softsign(x) @tf_export('keras.activations.relu') def relu(x, alpha=0., max_value=None): """Rectified Linear Unit. Arguments: x: Input tensor. alpha: Slope of the negative part. Defaults to zero. max_value: Maximum value for the output. Returns: The (leaky) rectified linear unit activation: `x` if `x > 0`, `alpha * x` if `x < 0`. If `max_value` is defined, the result is truncated to this value. """ return K.relu(x, alpha=alpha, max_value=max_value) @tf_export('keras.activations.tanh') def tanh(x): return nn.tanh(x) @tf_export('keras.activations.sigmoid') def sigmoid(x): return nn.sigmoid(x) @tf_export('keras.activations.hard_sigmoid') def hard_sigmoid(x): """Hard sigmoid activation function. Faster to compute than sigmoid activation. Arguments: x: Input tensor. Returns: Hard sigmoid activation: - `0` if `x < -2.5` - `1` if `x > 2.5` - `0.2 * x + 0.5` if `-2.5 <= x <= 2.5`. """ return K.hard_sigmoid(x) @tf_export('keras.activations.linear') def linear(x): return x @tf_export('keras.activations.serialize') def serialize(activation): return activation.__name__ @tf_export('keras.activations.deserialize') def deserialize(name, custom_objects=None): return deserialize_keras_object( name, module_objects=globals(), custom_objects=custom_objects, printable_module_name='activation function') @tf_export('keras.activations.get') def get(identifier): if identifier is None: return linear if isinstance(identifier, six.string_types): identifier = str(identifier) return deserialize(identifier) elif callable(identifier): return identifier else: raise ValueError('Could not interpret ' 'activation function identifier:', identifier)