# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Experimental API for TensorFlow's "Eager" mode of execution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import contextlib import copy import random import threading from tensorflow.core.protobuf import config_pb2 from tensorflow.python import pywrap_tensorflow from tensorflow.python.framework import c_api_util from tensorflow.python.framework import device as pydev from tensorflow.python.util import compat from tensorflow.python.util import is_in_graph_mode from tensorflow.python.util import tf_contextlib from tensorflow.python.util.tf_export import tf_export GRAPH_MODE = 0 EAGER_MODE = 1 # Default execution mode. _default_mode = GRAPH_MODE # Cache from (old_device_name, partial_new_device_name) -> (new_device_name, # new_device_spec). # Note that we do not protect this with a lock and instead rely on python's GIL # and the idempotent nature of writes to provide thread safety. _device_parsing_cache = {} _MAXINT32 = 2**31 - 1 DEVICE_PLACEMENT_EXPLICIT = pywrap_tensorflow.TFE_DEVICE_PLACEMENT_EXPLICIT DEVICE_PLACEMENT_WARN = pywrap_tensorflow.TFE_DEVICE_PLACEMENT_WARN DEVICE_PLACEMENT_SILENT = pywrap_tensorflow.TFE_DEVICE_PLACEMENT_SILENT DEVICE_PLACEMENT_SILENT_FOR_INT32 = ( pywrap_tensorflow.TFE_DEVICE_PLACEMENT_SILENT_FOR_INT32) SYNC = 0 ASYNC = 1 class _TensorCache(object): """Simple cache which evicts items based on length in a FIFO manner.""" def __init__(self, max_items=256): self._data = collections.OrderedDict() self._max_items = max_items if max_items else 256 def put(self, key, value): self._data[key] = value if len(self._data) > self._max_items: self._data.popitem(last=False) def get(self, key): return self._data.get(key, None) def flush(self): self._data = {} # TODO(agarwal): better name ? class _EagerContext(threading.local): """Thread local eager context.""" def __init__(self): super(_EagerContext, self).__init__() self.device_spec = pydev.DeviceSpec.from_string("") self.device_name = self.device_spec.to_string() self.mode = _default_mode self.is_eager = _default_mode == EAGER_MODE self.scope_name = "" self.recording_summaries = False self.summary_writer_resource = None self.scalar_cache = {} self.ones_rank_cache = _TensorCache() self.execution_mode = None ContextSwitch = collections.namedtuple( "ContextSwitch", ["is_building_function", "enter_context_fn"]) # `_ContextSwitchStack` is a `threading.local` to match the semantics of # ``DefaultGraphStack`, which is also a `threading.local`. class _ContextSwitchStack(threading.local): """A thread-local stack of context switches.""" def __init__(self, eager): super(_ContextSwitchStack, self).__init__() self.stack = [] if eager: # Initialize the stack with a pointer to enter the eager context; this # ensures that the fact that eager execution was enabled is propagated # across threads, since (1) `enable_eager_execution` modifies a # process-level flag (`_default_mode`) and (2) `__init__` is called each # time a threading.local object is used in a separate thread. self.push(is_building_function=False, enter_context_fn=eager_mode) def push(self, is_building_function, enter_context_fn): """Push metadata about a context switch onto the stack. A context switch can take one of two forms: installing a graph as the default graph, or entering the eager context. For each context switch, we record whether or not the entered context is building a function. Args: is_building_function: (bool.) Whether the context is building a function. enter_context_fn: (function.) A callable that executes the context switch. For example, `graph.as_default` or `eager_mode`. """ self.stack.append( ContextSwitch(is_building_function, enter_context_fn)) def pop(self): """Pop the stack.""" self.stack.pop() # TODO(agarwal): rename to EagerContext / EagerRuntime ? # TODO(agarwal): consider keeping the corresponding Graph here. class Context(object): """Environment in which eager operations execute.""" # TODO(agarwal): create and link in some documentation for `execution_mode`. # pylint: disable=redefined-outer-name def __init__(self, config=None, device_policy=None, execution_mode=None, server_def=None): """Creates a new Context. Args: config: (Optional.) A `ConfigProto` protocol buffer with configuration options for the Context. Note that a lot of these options may be currently unimplemented or irrelevant when eager execution is enabled. device_policy: (Optional.) What policy to use when trying to run an operation on a device with inputs which are not on that device. When set to None, an appropriate value will be picked automatically. The value picked may change between TensorFlow releases. Defaults to tf.contrib.eager.DEVICE_PLACEMENT_SILENT_FOR_INT32. Valid values: - tfe.DEVICE_PLACEMENT_EXPLICIT: raises an error if the placement is not correct. - tfe.DEVICE_PLACEMENT_WARN: copies the tensors which are not on the right device but raises a warning. - tfe.DEVICE_PLACEMENT_SILENT: silently copies the tensors. This might hide performance problems. - tfe.DEVICE_PLACEMENT_SILENT_FOR_INT32: silently copies int32 tensors, raising errors on the other ones. execution_mode: (Optional.) Policy controlling how operations dispatched are actually executed. When set to None, an appropriate value will be picked automatically. The value picked may change between TensorFlow releases. Valid values: - tf.contrib.eager.SYNC: executes each operation synchronously. - tf.contrib.eager.ASYNC: executes each operation asynchronously. These operations may return "non-ready" handles. Raises: ValueError: If execution_mode is not valid. """ self._eager_context = _EagerContext() self._context_switches = _ContextSwitchStack(self.executing_eagerly()) self._context_handle = None self._context_devices = None self._post_execution_callbacks = [] self._config = config self._seed = None self._initialize_lock = threading.Lock() self._device_policy = device_policy if execution_mode not in (None, SYNC, ASYNC): raise ValueError( "execution_mode should be None/SYNC/ASYNC. Got %s" % execution_mode) if execution_mode is None: execution_mode = SYNC self._execution_mode = execution_mode self._server_def = server_def # pylint: enable=redefined-outer-name def _set_global_seed(self, seed): """Set a global eager mode seed for random ops.""" self._seed = seed self._rng = random.Random(self._seed) # Also clear the kernel cache, to reset any existing seeds if self._context_handle is not None: pywrap_tensorflow.TFE_ContextClearCaches(self._context_handle) def _internal_operation_seed(self): """Returns a fake operation seed. In eager mode, user shouldn't set or depend on operation seed. Here, we generate a random seed based on global seed to make operation's randomness different and depend on the global seed. Returns: A fake operation seed based on global seed. """ return self._rng.randint(0, _MAXINT32) def _initialize_handle_and_devices(self): """Initialize handle and devices.""" with self._initialize_lock: if self._context_handle is not None: return assert self._context_devices is None opts = pywrap_tensorflow.TFE_NewContextOptions() try: if self._config is not None: config_str = self._config.SerializeToString() pywrap_tensorflow.TFE_ContextOptionsSetConfig(opts, config_str) if self._device_policy is not None: pywrap_tensorflow.TFE_ContextOptionsSetDevicePlacementPolicy( opts, self._device_policy) if self._execution_mode == ASYNC: pywrap_tensorflow.TFE_ContextOptionsSetAsync(opts, True) if self._server_def is not None: server_def_str = self._server_def.SerializeToString() pywrap_tensorflow.TFE_ContextOptionsSetServerDef(opts, server_def_str) self._context_handle = pywrap_tensorflow.TFE_NewContext(opts) finally: pywrap_tensorflow.TFE_DeleteContextOptions(opts) # Store list of devices self._context_devices = [] device_list = pywrap_tensorflow.TFE_ContextListDevices( self._context_handle) try: self._num_gpus = 0 for i in range(pywrap_tensorflow.TF_DeviceListCount(device_list)): dev_name = pywrap_tensorflow.TF_DeviceListName(device_list, i) self._context_devices.append(pydev.canonical_name(dev_name)) dev_type = pywrap_tensorflow.TF_DeviceListType(device_list, i) if dev_type == "GPU": self._num_gpus += 1 finally: pywrap_tensorflow.TF_DeleteDeviceList(device_list) @property def _handle(self): ctx = self._context_handle if ctx is None: self._initialize_handle_and_devices() return self._context_handle else: return ctx @property def _devices(self): devices = self._context_devices if devices is None: self._initialize_handle_and_devices() return self._context_devices else: return devices def __str__(self): if self._context_handle is None: return "Eager TensorFlow Context. Devices currently uninitialized." else: devices = self._devices lines = ["Eager TensorFlow Context with %d devices" % (len(devices))] for i, d in enumerate(devices): lines.append(" Device %d: %s" % (i, d)) return "\n".join(lines) @tf_contextlib.contextmanager def _mode(self, mode): """A context manager to allow setting the mode to EAGER/GRAPH.""" ctx = self._eager_context old_mode = ctx.mode old_is_eager = ctx.is_eager ctx.mode = mode ctx.is_eager = mode == EAGER_MODE if mode == EAGER_MODE: # Entering graph mode does not provide us with sufficient information to # record a context switch; graph-based context switches are only logged # when a graph is registered as the default graph. self.context_switches.push(False, eager_mode) try: yield finally: ctx.is_eager = old_is_eager ctx.mode = old_mode if mode == EAGER_MODE: self.context_switches.pop() def executing_eagerly(self): """Returns True if current thread has eager executing enabled.""" return self._eager_context.is_eager def scalar_cache(self): """Per-device cache for scalars.""" return self._eager_context.scalar_cache def ones_rank_cache(self): """Per-device cache for scalars.""" return self._eager_context.ones_rank_cache @property def scope_name(self): """Returns scope name for the current thread.""" return self._eager_context.scope_name @scope_name.setter def scope_name(self, s): """Sets scope name for the current thread.""" self._eager_context.scope_name = s @property def summary_writer_resource(self): """Returns summary writer resource.""" return self._eager_context.summary_writer_resource @summary_writer_resource.setter def summary_writer_resource(self, resource): """Sets summary writer resource.""" self._eager_context.summary_writer_resource = resource @property def device_name(self): """Returns the device name for the current thread.""" return self._eager_context.device_name @property def device_spec(self): """Returns the device spec for the current thread.""" return self._eager_context.device_spec @tf_contextlib.contextmanager def device(self, name): """Context-manager to force placement of operations and Tensors on a device. Args: name: Name of the device or None to get default placement. Yields: Nothing. Raises: ValueError: If name is not a string or is an invalid device name. """ eager_context = self._eager_context old_device_name = eager_context.device_name old_device_spec = eager_context.device_spec cache_key = (old_device_name, name) try: new_device_name, new_device_spec = _device_parsing_cache[cache_key] except TypeError: # Error while trying to compute the cache key. raise ValueError("Expecting a string device name. Got %s(%s)" % (type(name), name)) except KeyError: # Handle a cache miss. if name is not None: if not isinstance(name, str): raise ValueError("Expecting a string device name. Got %s(%s)" % (type(name), name)) device_spec = pydev.DeviceSpec.from_string(name) if old_device_name: new_device_spec = copy.copy(old_device_spec) else: new_device_spec = pydev.DeviceSpec.from_string( "/job:localhost/replica:0/task:0/device:CPU:0") new_device_spec.merge_from(device_spec) else: new_device_spec = pydev.DeviceSpec.from_string("") new_device_name = new_device_spec.to_string() _device_parsing_cache[cache_key] = (new_device_name, new_device_spec) try: eager_context.device_name = new_device_name eager_context.device_spec = new_device_spec yield finally: eager_context.device_name = old_device_name eager_context.device_spec = old_device_spec def devices(self): """List of the names of devices available to execute operations.""" return self._devices def get_execution_mode(self): mode = self._eager_context.execution_mode if mode is None: mode = self._execution_mode return mode def set_execution_mode(self, mode): """Sets execution mode for current thread.""" if mode not in (None, SYNC, ASYNC): raise ValueError( "Execution mode should be None/SYNC/ASYNC. Got %s" % mode) if mode is None: mode = SYNC self._eager_context.execution_mode = mode pywrap_tensorflow.TFE_ContextSetAsyncForThread(self._handle, mode == ASYNC) @tf_contextlib.contextmanager def execution_mode(self, mode): """Context manager for setting execution mode for current thread.""" old_mode = self.get_execution_mode() try: self.set_execution_mode(mode) yield finally: self.set_execution_mode(old_mode) def async_wait(self): """Waits for ops dispatched in ASYNC mode to finish.""" pywrap_tensorflow.TFE_ContextAsyncWait(self._handle) def async_clear_error(self): """Clears errors raised during ASYNC execution.""" pywrap_tensorflow.TFE_ContextAsyncClearError(self._handle) def num_gpus(self): """The number of GPUs available to execute operations.""" self._initialize_handle_and_devices() return self._num_gpus def add_function(self, fn): """Add a function definition to the context. Once added, the function (identified by its name) can be executed like any other operation. Args: fn: A wrapped TF_Function (returned from TF_GraphToFunction_wrapper). """ pywrap_tensorflow.TFE_ContextAddFunction( self._handle, # pylint: disable=protected-access fn) def add_function_def(self, fdef): """Add a function definition to the context. Once added, the function (identified by its name) can be executed like any other operation. Args: fdef: A FunctionDef protocol buffer message. """ fdef_string = fdef.SerializeToString() pywrap_tensorflow.TFE_ContextAddFunctionDef( self._handle, # pylint: disable=protected-access fdef_string, len(fdef_string)) def add_post_execution_callback(self, callback): """Add a post-execution callback to the context. A post-execution callback is invoked immediately after an eager operation or function has finished execution, providing access to the op's type, name input and output tensors. Multiple execution callbacks can be added, in which case the callbacks will be invoked in the order in which they are added. Args: callback: a callable of the signature `f(op_type, op_name, attrs, inputs, outputs)`. `op_type` is the type of the operation that was just executed (e.g., `MatMul`). `op_name` is the name of the operation that has was just executed. This name is set by the client who created the operation and can be `None` if it is unset. `attrs` contains the attributes of the operation as a `tuple` of alternating attribute names and attribute values. `inputs` is the `list` of input `Tensor`(s) to the op. `outputs` is the `list` of output `Tensor`(s) from the op. Return value(s) from the callback are ignored. """ # TODO(cais): (b/64674139) Allow access to function-internal operations. self._post_execution_callbacks.append(callback) def clear_post_execution_callbacks(self): """Clear all post-execution callbacks added to the context.""" del self._post_execution_callbacks[:] @property def post_execution_callbacks(self): """Get the list of post-execution callbacks added to the context.""" return self._post_execution_callbacks def enable_run_metadata(self): """Enables tracing of op execution via RunMetadata. To retrieve the accumulated metadata call context.export_run_metadata() and to stop tracing call context.disable_run_metadata(). """ pywrap_tensorflow.TFE_ContextEnableRunMetadata(self._handle) @tf_contextlib.contextmanager def device_policy(self, policy): handle = self._handle old = pywrap_tensorflow.TFE_ContextGetDevicePlacementPolicy(handle) pywrap_tensorflow.TFE_ContextSetThreadLocalDevicePlacementPolicy( handle, policy) try: yield finally: pywrap_tensorflow.TFE_ContextSetThreadLocalDevicePlacementPolicy( handle, old) def disable_run_metadata(self): """Disables tracing of op execution via RunMetadata.""" if not self._context_handle: return pywrap_tensorflow.TFE_ContextDisableRunMetadata(self._context_handle) def export_run_metadata(self): """Returns a RunMetadata proto with accumulated information. The returned protocol buffer contains information since the most recent call to either enable_run_metadata or export_run_metadata. Returns: A RunMetadata protocol buffer. Or None if not enabled. """ if not self._context_handle: return None with c_api_util.tf_buffer() as buffer_: pywrap_tensorflow.TFE_ContextExportRunMetadata( self._context_handle, buffer_) proto_data = pywrap_tensorflow.TF_GetBuffer(buffer_) run_metadata = config_pb2.RunMetadata() run_metadata.ParseFromString(compat.as_bytes(proto_data)) return run_metadata @property def context_switches(self): """Returns a stack of context switches.""" return self._context_switches _context = None _context_lock = threading.Lock() def _initialize_context(): global _context with _context_lock: if _context is None: _context = Context() def context(): """Returns a singleton context object.""" if _context is None: _initialize_context() return _context def context_safe(): return _context # TODO(agarwal): remove this. def get_default_context(): """Same as context.""" if _context is None: _initialize_context() return _context def set_global_seed(seed): """Sets the eager mode seed.""" context()._set_global_seed(seed) # pylint: disable=protected-access def global_seed(): """Returns the eager mode seed.""" return context()._seed # pylint: disable=protected-access def internal_operation_seed(): """Returns the operation seed generated based on global seed.""" return context()._internal_operation_seed() # pylint: disable=protected-access @tf_export("executing_eagerly") def executing_eagerly(): """Returns True if the current thread has eager execution enabled. Eager execution is typically enabled via @{tf.enable_eager_execution}, but may also be enabled within the context of a Python function via tf.contrib.eager.py_func. """ return context().executing_eagerly() def in_eager_mode(): """Use executing_eagerly() instead. This function will be removed.""" return executing_eagerly() def graph_mode(): """Context-manager to disable eager execution for the current thread.""" return context()._mode(GRAPH_MODE) # pylint: disable=protected-access def eager_mode(): """Context-manager to enable eager execution for the current thread.""" return context()._mode(EAGER_MODE) # pylint: disable=protected-access # TODO(agarwal): get rid of this and use ops.name_scope instead. @contextlib.contextmanager def namescope(name): """ContextManager for creating hierarchical name scopes.""" ctx = context() old_name = ctx.scope_name ctx.scope_name = "%s/%s" % (old_name, name) if old_name else name try: yield finally: ctx.scope_name = old_name def scope_name(): """Name of the current scope.""" return context().scope_name def device(name): """Context-manager to force placement of operations and Tensors on a device. Example: ```python with tfe.device('gpu:0'): with tfe.device('cpu:0'): shape = tf.constant([], dtype=tf.int32) x = tf.truncated_normal(shape, tf.float32) ``` will ensure that the `shape` Tensor is on CPU but the `truncated_normal` operation runs on GPU 0. Args: name: Name of the device (see context().devices()), or None to perform automatic placement. Returns: Context manager for setting the device. """ return context().device(name) def list_devices(): """List the names of the available devices. Returns: Names of the available devices, as a `list`. """ return context().devices() def set_execution_mode(mode): """Sets execution mode for the current thread.""" context().set_execution_mode(mode) def execution_mode(mode): """Context manager for setting execution mode for current thread.""" return context().execution_mode(mode) def async_wait(): """Waits for ops dispatched in ASYNC mode to finish.""" return context().async_wait() def async_clear_error(): """Clears errors raised during ASYNC execution mode.""" return context().async_clear_error() def num_gpus(): """Get the number of available GPU devices. Returns: The number of available GPU devices. """ return context().num_gpus() def enable_run_metadata(): """Enables tracing of op execution via RunMetadata. To retrieve the accumulated metadata call context.export_run_metadata() and to stop tracing call context.disable_run_metadata(). """ context().enable_run_metadata() def disable_run_metadata(): """Disables tracing of op execution via RunMetadata.""" context().disable_run_metadata() def export_run_metadata(): """Returns a RunMetadata proto with accumulated information. The returned protocol buffer contains information since the most recent call to either enable_run_metadata or export_run_metadata. Returns: A RunMetadata protocol buffer. """ return context().export_run_metadata() # Not every user creates a Context via context.context() # (for example, enable_eager_execution in python/framework/ops.py), # but they do all import this file. Note that IS_IN_GRAPH_MODE and # in_graph_mode are both parameterless functions. def _tmp_in_graph_mode(): return not executing_eagerly() is_in_graph_mode.IS_IN_GRAPH_MODE = _tmp_in_graph_mode