# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Scalar summaries and TensorFlow operations to create them. A scalar summary stores a single floating-point value, as a rank-0 tensor. NOTE: This module is in beta, and its API is subject to change, but the data that it stores to disk will be supported forever. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np from tensorboard.plugins.scalar import metadata def op(name, data, display_name=None, description=None, collections=None): """Create a scalar summary op. Arguments: name: A unique name for the generated summary node. data: A real numeric rank-0 `Tensor`. Must have `dtype` castable to `float32`. display_name: Optional name for this summary in TensorBoard, as a constant `str`. Defaults to `name`. description: Optional long-form description for this summary, as a constant `str`. Markdown is supported. Defaults to empty. collections: Optional list of graph collections keys. The new summary op is added to these collections. Defaults to `[Graph Keys.SUMMARIES]`. Returns: A TensorFlow summary op. """ if display_name is None: display_name = name summary_metadata = metadata.create_summary_metadata( display_name=display_name, description=description) with tf.name_scope(name): with tf.control_dependencies([tf.assert_scalar(data)]): return tf.summary.tensor_summary(name='scalar_summary', tensor=tf.cast(data, tf.float32), collections=collections, summary_metadata=summary_metadata) def pb(name, data, display_name=None, description=None): """Create a scalar summary protobuf. Arguments: name: A unique name for the generated summary, including any desired name scopes. data: A rank-0 `np.array` or array-like form (so raw `int`s and `float`s are fine, too). display_name: Optional name for this summary in TensorBoard, as a `str`. Defaults to `name`. description: Optional long-form description for this summary, as a `str`. Markdown is supported. Defaults to empty. Returns: A `tf.Summary` protobuf object. """ data = np.array(data) if data.shape != (): raise ValueError('Expected scalar shape for data, saw shape: %s.' % data.shape) if data.dtype.kind not in ('b', 'i', 'u', 'f'): # bool, int, uint, float raise ValueError('Cast %s to float is not supported' % data.dtype.name) tensor = tf.make_tensor_proto(data.astype(np.float32)) if display_name is None: display_name = name summary_metadata = metadata.create_summary_metadata( display_name=display_name, description=description) summary = tf.Summary() summary.value.add(tag='%s/scalar_summary' % name, metadata=summary_metadata, tensor=tensor) return summary