# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The TensorBoard Images plugin.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import imghdr import six from six.moves import urllib import tensorflow as tf from werkzeug import wrappers from tensorboard import plugin_util from tensorboard.backend import http_util from tensorboard.plugins import base_plugin from tensorboard.plugins.image import metadata _IMGHDR_TO_MIMETYPE = { 'bmp': 'image/bmp', 'gif': 'image/gif', 'jpeg': 'image/jpeg', 'png': 'image/png' } _DEFAULT_IMAGE_MIMETYPE = 'application/octet-stream' class ImagesPlugin(base_plugin.TBPlugin): """Images Plugin for TensorBoard.""" plugin_name = metadata.PLUGIN_NAME def __init__(self, context): """Instantiates ImagesPlugin via TensorBoard core. Args: context: A base_plugin.TBContext instance. """ self._multiplexer = context.multiplexer self._db_connection_provider = context.db_connection_provider def get_plugin_apps(self): return { '/images': self._serve_image_metadata, '/individualImage': self._serve_individual_image, '/tags': self._serve_tags, } def is_active(self): """The images plugin is active iff any run has at least one relevant tag.""" if self._db_connection_provider: # The plugin is active if one relevant tag can be found in the database. db = self._db_connection_provider() cursor = db.execute( ''' SELECT 1 FROM Tags WHERE Tags.plugin_name = ? LIMIT 1 ''', (metadata.PLUGIN_NAME,)) return bool(list(cursor)) if not self._multiplexer: return False return bool(self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME)) def _index_impl(self): if self._db_connection_provider: db = self._db_connection_provider() cursor = db.execute( ''' SELECT Runs.run_name, Tags.tag_name, Tags.display_name, Descriptions.description, /* Subtract 2 for leading width and height elements. */ MAX(CAST (Tensors.shape AS INT)) - 2 AS samples FROM Tags JOIN Runs USING (run_id) JOIN Descriptions ON Tags.tag_id = Descriptions.id JOIN Tensors ON Tags.tag_id = Tensors.series WHERE Tags.plugin_name = :plugin /* Shape should correspond to a rank-1 tensor. */ AND NOT INSTR(Tensors.shape, ',') /* Required to use TensorSeriesStepIndex. */ AND Tensors.step IS NOT NULL GROUP BY Tags.tag_id HAVING samples >= 1 ''', {'plugin': metadata.PLUGIN_NAME}) result = collections.defaultdict(dict) for row in cursor: run_name, tag_name, display_name, description, samples = row result[run_name][tag_name] = { 'displayName': display_name, 'description': plugin_util.markdown_to_safe_html(description), 'samples': samples } return result runs = self._multiplexer.Runs() result = {run: {} for run in runs} mapping = self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME) for (run, tag_to_content) in six.iteritems(mapping): for tag in tag_to_content: summary_metadata = self._multiplexer.SummaryMetadata(run, tag) tensor_events = self._multiplexer.Tensors(run, tag) samples = max([len(event.tensor_proto.string_val[2:]) # width, height for event in tensor_events] + [0]) result[run][tag] = {'displayName': summary_metadata.display_name, 'description': plugin_util.markdown_to_safe_html( summary_metadata.summary_description), 'samples': samples} return result @wrappers.Request.application def _serve_image_metadata(self, request): """Given a tag and list of runs, serve a list of metadata for images. Note that the images themselves are not sent; instead, we respond with URLs to the images. The frontend should treat these URLs as opaque and should not try to parse information about them or generate them itself, as the format may change. Args: request: A werkzeug.wrappers.Request object. Returns: A werkzeug.Response application. """ tag = request.args.get('tag') run = request.args.get('run') sample = int(request.args.get('sample', 0)) response = self._image_response_for_run(run, tag, sample) return http_util.Respond(request, response, 'application/json') def _image_response_for_run(self, run, tag, sample): """Builds a JSON-serializable object with information about images. Args: run: The name of the run. tag: The name of the tag the images all belong to. sample: The zero-indexed sample of the image for which to retrieve information. For instance, setting `sample` to `2` will fetch information about only the third image of each batch. Steps with fewer than three images will be omitted from the results. Returns: A list of dictionaries containing the wall time, step, URL, width, and height for each image. """ if self._db_connection_provider: db = self._db_connection_provider() cursor = db.execute( ''' SELECT computed_time, step, CAST (T0.data AS INT) AS width, CAST (T1.data AS INT) AS height FROM Tensors JOIN TensorStrings AS T0 ON Tensors.rowid = T0.tensor_rowid JOIN TensorStrings AS T1 ON Tensors.rowid = T1.tensor_rowid WHERE series = ( SELECT tag_id FROM Runs CROSS JOIN Tags USING (run_id) WHERE Runs.run_name = :run AND Tags.tag_name = :tag) AND step IS NOT NULL AND dtype = :dtype /* Should be n-vector, n >= 3: [width, height, samples...] */ AND (NOT INSTR(shape, ',') AND CAST (shape AS INT) >= 3) AND T0.idx = 0 AND T1.idx = 1 ORDER BY step ''', {'run': run, 'tag': tag, 'dtype': tf.string.as_datatype_enum}) return [{ 'wall_time': computed_time, 'step': step, 'width': width, 'height': height, 'query': self._query_for_individual_image(run, tag, sample, index) } for index, (computed_time, step, width, height) in enumerate(cursor)] response = [] index = 0 tensor_events = self._multiplexer.Tensors(run, tag) filtered_events = self._filter_by_sample(tensor_events, sample) for (index, tensor_event) in enumerate(filtered_events): (width, height) = tensor_event.tensor_proto.string_val[:2] response.append({ 'wall_time': tensor_event.wall_time, 'step': tensor_event.step, # We include the size so that the frontend can add that to the # tag so that the page layout doesn't change when the image loads. 'width': int(width), 'height': int(height), 'query': self._query_for_individual_image(run, tag, sample, index) }) return response def _filter_by_sample(self, tensor_events, sample): return [tensor_event for tensor_event in tensor_events if (len(tensor_event.tensor_proto.string_val) - 2 # width, height > sample)] def _query_for_individual_image(self, run, tag, sample, index): """Builds a URL for accessing the specified image. This should be kept in sync with _serve_image_metadata. Note that the URL is *not* guaranteed to always return the same image, since images may be unloaded from the reservoir as new images come in. Args: run: The name of the run. tag: The tag. sample: The relevant sample index, zero-indexed. See documentation on `_image_response_for_run` for more details. index: The index of the image. Negative values are OK. Returns: A string representation of a URL that will load the index-th sampled image in the given run with the given tag. """ query_string = urllib.parse.urlencode({ 'run': run, 'tag': tag, 'sample': sample, 'index': index, }) return query_string def _get_individual_image(self, run, tag, index, sample): """ Returns the actual image bytes for a given image. Args: run: The name of the run the image belongs to. tag: The name of the tag the images belongs to. index: The index of the image in the current reservoir. sample: The zero-indexed sample of the image to retrieve (for example, setting `sample` to `2` will fetch the third image sample at `step`). Returns: A bytestring of the raw image bytes. """ if self._db_connection_provider: db = self._db_connection_provider() cursor = db.execute( ''' SELECT data FROM TensorStrings WHERE /* Skip first 2 elements which are width and height. */ idx = 2 + :sample AND tensor_rowid = ( SELECT rowid FROM Tensors WHERE series = ( SELECT tag_id FROM Runs CROSS JOIN Tags USING (run_id) WHERE Runs.run_name = :run AND Tags.tag_name = :tag) AND step IS NOT NULL AND dtype = :dtype /* Should be n-vector, n >= 3: [width, height, samples...] */ AND (NOT INSTR(shape, ',') AND CAST (shape AS INT) >= 3) ORDER BY step LIMIT 1 OFFSET :index) ''', {'run': run, 'tag': tag, 'sample': sample, 'index': index, 'dtype': tf.string.as_datatype_enum}) (data,) = cursor.fetchone() return six.binary_type(data) events = self._filter_by_sample(self._multiplexer.Tensors(run, tag), sample) images = events[index].tensor_proto.string_val[2:] # skip width, height return images[sample] @wrappers.Request.application def _serve_individual_image(self, request): """Serves an individual image.""" run = request.args.get('run') tag = request.args.get('tag') index = int(request.args.get('index')) sample = int(request.args.get('sample', 0)) data = self._get_individual_image(run, tag, index, sample) image_type = imghdr.what(None, data) content_type = _IMGHDR_TO_MIMETYPE.get(image_type, _DEFAULT_IMAGE_MIMETYPE) return http_util.Respond(request, data, content_type) @wrappers.Request.application def _serve_tags(self, request): index = self._index_impl() return http_util.Respond(request, index, 'application/json')