# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities to migrate legacy protos to their modern equivalents.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorboard.plugins.audio import metadata as audio_metadata from tensorboard.plugins.image import metadata as image_metadata from tensorboard.plugins.histogram import metadata as histogram_metadata from tensorboard.plugins.scalar import metadata as scalar_metadata def migrate_value(value): """Convert `value` to a new-style value, if necessary and possible. An "old-style" value is a value that uses any `value` field other than the `tensor` field. A "new-style" value is a value that uses the `tensor` field. TensorBoard continues to support old-style values on disk; this method converts them to new-style values so that further code need only deal with one data format. Arguments: value: A `tf.Summary.Value` object. This argument is not modified. Returns: If the `value` is an old-style value for which there is a new-style equivalent, the result is the new-style value. Otherwise---if the value is already new-style or does not yet have a new-style equivalent---the value will be returned unchanged. :type value: tf.Summary.Value :rtype: tf.Summary.Value """ handler = { 'histo': _migrate_histogram_value, 'image': _migrate_image_value, 'audio': _migrate_audio_value, 'simple_value': _migrate_scalar_value, }.get(value.WhichOneof('value')) return handler(value) if handler else value def _migrate_histogram_value(value): histogram_value = value.histo bucket_lefts = [histogram_value.min] + histogram_value.bucket_limit[:-1] bucket_rights = histogram_value.bucket_limit[:-1] + [histogram_value.max] bucket_counts = histogram_value.bucket buckets = np.array([bucket_lefts, bucket_rights, bucket_counts]).transpose() tensor_proto = tf.make_tensor_proto(buckets) summary_metadata = histogram_metadata.create_summary_metadata( display_name=value.metadata.display_name or value.tag, description=value.metadata.summary_description) return tf.Summary.Value(tag=value.tag, metadata=summary_metadata, tensor=tensor_proto) def _migrate_image_value(value): image_value = value.image data = [tf.compat.as_bytes(str(image_value.width)), tf.compat.as_bytes(str(image_value.height)), tf.compat.as_bytes(image_value.encoded_image_string)] tensor_proto = tf.make_tensor_proto(data) summary_metadata = image_metadata.create_summary_metadata( display_name=value.metadata.display_name or value.tag, description=value.metadata.summary_description) return tf.Summary.Value(tag=value.tag, metadata=summary_metadata, tensor=tensor_proto) def _migrate_audio_value(value): audio_value = value.audio data = [[audio_value.encoded_audio_string, b'']] # empty label tensor_proto = tf.make_tensor_proto(data) summary_metadata = audio_metadata.create_summary_metadata( display_name=value.metadata.display_name or value.tag, description=value.metadata.summary_description, encoding=audio_metadata.Encoding.Value('WAV')) return tf.Summary.Value(tag=value.tag, metadata=summary_metadata, tensor=tensor_proto) def _migrate_scalar_value(value): scalar_value = value.simple_value tensor_proto = tf.make_tensor_proto(scalar_value) summary_metadata = scalar_metadata.create_summary_metadata( display_name=value.metadata.display_name or value.tag, description=value.metadata.summary_description) return tf.Summary.Value(tag=value.tag, metadata=summary_metadata, tensor=tensor_proto)