from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn import datasets from sklearn.base import clone from sklearn.datasets import fetch_mldata from sklearn.datasets import make_classification from sklearn.ensemble import GradientBoostingRegressor, RandomForestClassifier from sklearn.exceptions import NotFittedError from sklearn.externals.joblib import cpu_count from sklearn.linear_model import Lasso from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.linear_model import SGDRegressor from sklearn.metrics import jaccard_similarity_score from sklearn.multiclass import OneVsRestClassifier from sklearn.multioutput import ClassifierChain from sklearn.multioutput import MultiOutputClassifier from sklearn.multioutput import MultiOutputRegressor from sklearn.svm import LinearSVC from sklearn.base import ClassifierMixin from sklearn.utils import shuffle def test_multi_target_regression(): X, y = datasets.make_regression(n_targets=3) X_train, y_train = X[:50], y[:50] X_test, y_test = X[50:], y[50:] references = np.zeros_like(y_test) for n in range(3): rgr = GradientBoostingRegressor(random_state=0) rgr.fit(X_train, y_train[:, n]) references[:, n] = rgr.predict(X_test) rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0)) rgr.fit(X_train, y_train) y_pred = rgr.predict(X_test) assert_almost_equal(references, y_pred) def test_multi_target_regression_partial_fit(): X, y = datasets.make_regression(n_targets=3) X_train, y_train = X[:50], y[:50] X_test, y_test = X[50:], y[50:] references = np.zeros_like(y_test) half_index = 25 for n in range(3): sgr = SGDRegressor(random_state=0, max_iter=5) sgr.partial_fit(X_train[:half_index], y_train[:half_index, n]) sgr.partial_fit(X_train[half_index:], y_train[half_index:, n]) references[:, n] = sgr.predict(X_test) sgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5)) sgr.partial_fit(X_train[:half_index], y_train[:half_index]) sgr.partial_fit(X_train[half_index:], y_train[half_index:]) y_pred = sgr.predict(X_test) assert_almost_equal(references, y_pred) assert_false(hasattr(MultiOutputRegressor(Lasso), 'partial_fit')) def test_multi_target_regression_one_target(): # Test multi target regression raises X, y = datasets.make_regression(n_targets=1) rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0)) assert_raises(ValueError, rgr.fit, X, y) def test_multi_target_sparse_regression(): X, y = datasets.make_regression(n_targets=3) X_train, y_train = X[:50], y[:50] X_test = X[50:] for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix, sp.lil_matrix]: rgr = MultiOutputRegressor(Lasso(random_state=0)) rgr_sparse = MultiOutputRegressor(Lasso(random_state=0)) rgr.fit(X_train, y_train) rgr_sparse.fit(sparse(X_train), y_train) assert_almost_equal(rgr.predict(X_test), rgr_sparse.predict(sparse(X_test))) def test_multi_target_sample_weights_api(): X = [[1, 2, 3], [4, 5, 6]] y = [[3.141, 2.718], [2.718, 3.141]] w = [0.8, 0.6] rgr = MultiOutputRegressor(Lasso()) assert_raises_regex(ValueError, "does not support sample weights", rgr.fit, X, y, w) # no exception should be raised if the base estimator supports weights rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0)) rgr.fit(X, y, w) def test_multi_target_sample_weight_partial_fit(): # weighted regressor X = [[1, 2, 3], [4, 5, 6]] y = [[3.141, 2.718], [2.718, 3.141]] w = [2., 1.] rgr_w = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5)) rgr_w.partial_fit(X, y, w) # weighted with different weights w = [2., 2.] rgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5)) rgr.partial_fit(X, y, w) assert_not_equal(rgr.predict(X)[0][0], rgr_w.predict(X)[0][0]) def test_multi_target_sample_weights(): # weighted regressor Xw = [[1, 2, 3], [4, 5, 6]] yw = [[3.141, 2.718], [2.718, 3.141]] w = [2., 1.] rgr_w = MultiOutputRegressor(GradientBoostingRegressor(random_state=0)) rgr_w.fit(Xw, yw, w) # unweighted, but with repeated samples X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]] y = [[3.141, 2.718], [3.141, 2.718], [2.718, 3.141]] rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0)) rgr.fit(X, y) X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]] assert_almost_equal(rgr.predict(X_test), rgr_w.predict(X_test)) # Import the data iris = datasets.load_iris() # create a multiple targets by randomized shuffling and concatenating y. X = iris.data y1 = iris.target y2 = shuffle(y1, random_state=1) y3 = shuffle(y1, random_state=2) y = np.column_stack((y1, y2, y3)) n_samples, n_features = X.shape n_outputs = y.shape[1] n_classes = len(np.unique(y1)) classes = list(map(np.unique, (y1, y2, y3))) def test_multi_output_classification_partial_fit_parallelism(): sgd_linear_clf = SGDClassifier(loss='log', random_state=1, max_iter=5) mor = MultiOutputClassifier(sgd_linear_clf, n_jobs=-1) mor.partial_fit(X, y, classes) est1 = mor.estimators_[0] mor.partial_fit(X, y) est2 = mor.estimators_[0] if cpu_count() > 1: # parallelism requires this to be the case for a sane implementation assert_false(est1 is est2) def test_multi_output_classification_partial_fit(): # test if multi_target initializes correctly with base estimator and fit # assert predictions work as expected for predict sgd_linear_clf = SGDClassifier(loss='log', random_state=1, max_iter=5) multi_target_linear = MultiOutputClassifier(sgd_linear_clf) # train the multi_target_linear and also get the predictions. half_index = X.shape[0] // 2 multi_target_linear.partial_fit( X[:half_index], y[:half_index], classes=classes) first_predictions = multi_target_linear.predict(X) assert_equal((n_samples, n_outputs), first_predictions.shape) multi_target_linear.partial_fit(X[half_index:], y[half_index:]) second_predictions = multi_target_linear.predict(X) assert_equal((n_samples, n_outputs), second_predictions.shape) # train the linear classification with each column and assert that # predictions are equal after first partial_fit and second partial_fit for i in range(3): # create a clone with the same state sgd_linear_clf = clone(sgd_linear_clf) sgd_linear_clf.partial_fit( X[:half_index], y[:half_index, i], classes=classes[i]) assert_array_equal(sgd_linear_clf.predict(X), first_predictions[:, i]) sgd_linear_clf.partial_fit(X[half_index:], y[half_index:, i]) assert_array_equal(sgd_linear_clf.predict(X), second_predictions[:, i]) def test_mutli_output_classifiation_partial_fit_no_first_classes_exception(): sgd_linear_clf = SGDClassifier(loss='log', random_state=1, max_iter=5) multi_target_linear = MultiOutputClassifier(sgd_linear_clf) assert_raises_regex(ValueError, "classes must be passed on the first call " "to partial_fit.", multi_target_linear.partial_fit, X, y) def test_multi_output_classification(): # test if multi_target initializes correctly with base estimator and fit # assert predictions work as expected for predict, prodict_proba and score forest = RandomForestClassifier(n_estimators=10, random_state=1) multi_target_forest = MultiOutputClassifier(forest) # train the multi_target_forest and also get the predictions. multi_target_forest.fit(X, y) predictions = multi_target_forest.predict(X) assert_equal((n_samples, n_outputs), predictions.shape) predict_proba = multi_target_forest.predict_proba(X) assert len(predict_proba) == n_outputs for class_probabilities in predict_proba: assert_equal((n_samples, n_classes), class_probabilities.shape) assert_array_equal(np.argmax(np.dstack(predict_proba), axis=1), predictions) # train the forest with each column and assert that predictions are equal for i in range(3): forest_ = clone(forest) # create a clone with the same state forest_.fit(X, y[:, i]) assert_equal(list(forest_.predict(X)), list(predictions[:, i])) assert_array_equal(list(forest_.predict_proba(X)), list(predict_proba[i])) def test_multiclass_multioutput_estimator(): # test to check meta of meta estimators svc = LinearSVC(random_state=0) multi_class_svc = OneVsRestClassifier(svc) multi_target_svc = MultiOutputClassifier(multi_class_svc) multi_target_svc.fit(X, y) predictions = multi_target_svc.predict(X) assert_equal((n_samples, n_outputs), predictions.shape) # train the forest with each column and assert that predictions are equal for i in range(3): multi_class_svc_ = clone(multi_class_svc) # create a clone multi_class_svc_.fit(X, y[:, i]) assert_equal(list(multi_class_svc_.predict(X)), list(predictions[:, i])) def test_multiclass_multioutput_estimator_predict_proba(): seed = 542 # make test deterministic rng = np.random.RandomState(seed) # random features X = rng.normal(size=(5, 5)) # random labels y1 = np.array(['b', 'a', 'a', 'b', 'a']).reshape(5, 1) # 2 classes y2 = np.array(['d', 'e', 'f', 'e', 'd']).reshape(5, 1) # 3 classes Y = np.concatenate([y1, y2], axis=1) clf = MultiOutputClassifier(LogisticRegression(random_state=seed)) clf.fit(X, Y) y_result = clf.predict_proba(X) y_actual = [np.array([[0.23481764, 0.76518236], [0.67196072, 0.32803928], [0.54681448, 0.45318552], [0.34883923, 0.65116077], [0.73687069, 0.26312931]]), np.array([[0.5171785, 0.23878628, 0.24403522], [0.22141451, 0.64102704, 0.13755846], [0.16751315, 0.18256843, 0.64991843], [0.27357372, 0.55201592, 0.17441036], [0.65745193, 0.26062899, 0.08191907]])] for i in range(len(y_actual)): assert_almost_equal(y_result[i], y_actual[i]) def test_multi_output_classification_sample_weights(): # weighted classifier Xw = [[1, 2, 3], [4, 5, 6]] yw = [[3, 2], [2, 3]] w = np.asarray([2., 1.]) forest = RandomForestClassifier(n_estimators=10, random_state=1) clf_w = MultiOutputClassifier(forest) clf_w.fit(Xw, yw, w) # unweighted, but with repeated samples X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]] y = [[3, 2], [3, 2], [2, 3]] forest = RandomForestClassifier(n_estimators=10, random_state=1) clf = MultiOutputClassifier(forest) clf.fit(X, y) X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]] assert_almost_equal(clf.predict(X_test), clf_w.predict(X_test)) def test_multi_output_classification_partial_fit_sample_weights(): # weighted classifier Xw = [[1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]] yw = [[3, 2], [2, 3], [3, 2]] w = np.asarray([2., 1., 1.]) sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5) clf_w = MultiOutputClassifier(sgd_linear_clf) clf_w.fit(Xw, yw, w) # unweighted, but with repeated samples X = [[1, 2, 3], [1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]] y = [[3, 2], [3, 2], [2, 3], [3, 2]] sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5) clf = MultiOutputClassifier(sgd_linear_clf) clf.fit(X, y) X_test = [[1.5, 2.5, 3.5]] assert_array_almost_equal(clf.predict(X_test), clf_w.predict(X_test)) def test_multi_output_exceptions(): # NotFittedError when fit is not done but score, predict and # and predict_proba are called moc = MultiOutputClassifier(LinearSVC(random_state=0)) assert_raises(NotFittedError, moc.predict, y) assert_raises(NotFittedError, moc.predict_proba, y) assert_raises(NotFittedError, moc.score, X, y) # ValueError when number of outputs is different # for fit and score y_new = np.column_stack((y1, y2)) moc.fit(X, y) assert_raises(ValueError, moc.score, X, y_new) # ValueError when y is continuous assert_raise_message(ValueError, "Unknown label type", moc.fit, X, X[:, 1]) def generate_multilabel_dataset_with_correlations(): # Generate a multilabel data set from a multiclass dataset as a way of # by representing the integer number of the original class using a binary # encoding. X, y = make_classification(n_samples=1000, n_features=100, n_classes=16, n_informative=10, random_state=0) Y_multi = np.array([[int(yyy) for yyy in format(yy, '#06b')[2:]] for yy in y]) return X, Y_multi def test_classifier_chain_fit_and_predict_with_logistic_regression(): # Fit classifier chain and verify predict performance X, Y = generate_multilabel_dataset_with_correlations() classifier_chain = ClassifierChain(LogisticRegression()) classifier_chain.fit(X, Y) Y_pred = classifier_chain.predict(X) assert_equal(Y_pred.shape, Y.shape) Y_prob = classifier_chain.predict_proba(X) Y_binary = (Y_prob >= .5) assert_array_equal(Y_binary, Y_pred) assert_equal([c.coef_.size for c in classifier_chain.estimators_], list(range(X.shape[1], X.shape[1] + Y.shape[1]))) assert isinstance(classifier_chain, ClassifierMixin) def test_classifier_chain_fit_and_predict_with_linear_svc(): # Fit classifier chain and verify predict performance using LinearSVC X, Y = generate_multilabel_dataset_with_correlations() classifier_chain = ClassifierChain(LinearSVC()) classifier_chain.fit(X, Y) Y_pred = classifier_chain.predict(X) assert_equal(Y_pred.shape, Y.shape) Y_decision = classifier_chain.decision_function(X) Y_binary = (Y_decision >= 0) assert_array_equal(Y_binary, Y_pred) assert not hasattr(classifier_chain, 'predict_proba') def test_classifier_chain_fit_and_predict_with_sparse_data(): # Fit classifier chain with sparse data X, Y = generate_multilabel_dataset_with_correlations() X_sparse = sp.csr_matrix(X) classifier_chain = ClassifierChain(LogisticRegression()) classifier_chain.fit(X_sparse, Y) Y_pred_sparse = classifier_chain.predict(X_sparse) classifier_chain = ClassifierChain(LogisticRegression()) classifier_chain.fit(X, Y) Y_pred_dense = classifier_chain.predict(X) assert_array_equal(Y_pred_sparse, Y_pred_dense) def test_classifier_chain_fit_and_predict_with_sparse_data_and_cv(): # Fit classifier chain with sparse data cross_val_predict X, Y = generate_multilabel_dataset_with_correlations() X_sparse = sp.csr_matrix(X) classifier_chain = ClassifierChain(LogisticRegression(), cv=3) classifier_chain.fit(X_sparse, Y) Y_pred = classifier_chain.predict(X_sparse) assert_equal(Y_pred.shape, Y.shape) def test_classifier_chain_random_order(): # Fit classifier chain with random order X, Y = generate_multilabel_dataset_with_correlations() classifier_chain_random = ClassifierChain(LogisticRegression(), order='random', random_state=42) classifier_chain_random.fit(X, Y) Y_pred_random = classifier_chain_random.predict(X) assert_not_equal(list(classifier_chain_random.order), list(range(4))) assert_equal(len(classifier_chain_random.order_), 4) assert_equal(len(set(classifier_chain_random.order_)), 4) classifier_chain_fixed = \ ClassifierChain(LogisticRegression(), order=classifier_chain_random.order_) classifier_chain_fixed.fit(X, Y) Y_pred_fixed = classifier_chain_fixed.predict(X) # Randomly ordered chain should behave identically to a fixed order chain # with the same order. assert_array_equal(Y_pred_random, Y_pred_fixed) def test_classifier_chain_crossval_fit_and_predict(): # Fit classifier chain with cross_val_predict and verify predict # performance X, Y = generate_multilabel_dataset_with_correlations() classifier_chain_cv = ClassifierChain(LogisticRegression(), cv=3) classifier_chain_cv.fit(X, Y) classifier_chain = ClassifierChain(LogisticRegression()) classifier_chain.fit(X, Y) Y_pred_cv = classifier_chain_cv.predict(X) Y_pred = classifier_chain.predict(X) assert_equal(Y_pred_cv.shape, Y.shape) assert_greater(jaccard_similarity_score(Y, Y_pred_cv), 0.4) assert_not_equal(jaccard_similarity_score(Y, Y_pred_cv), jaccard_similarity_score(Y, Y_pred)) def test_classifier_chain_vs_independent_models(): # Verify that an ensemble of classifier chains (each of length # N) can achieve a higher Jaccard similarity score than N independent # models X, Y = generate_multilabel_dataset_with_correlations() X_train = X[:600, :] X_test = X[600:, :] Y_train = Y[:600, :] Y_test = Y[600:, :] ovr = OneVsRestClassifier(LogisticRegression()) ovr.fit(X_train, Y_train) Y_pred_ovr = ovr.predict(X_test) chain = ClassifierChain(LogisticRegression()) chain.fit(X_train, Y_train) Y_pred_chain = chain.predict(X_test) assert_greater(jaccard_similarity_score(Y_test, Y_pred_chain), jaccard_similarity_score(Y_test, Y_pred_ovr))