import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import scipy.sparse as sp from sklearn.neighbors import BallTree from sklearn.neighbors import NearestNeighbors from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_in from sklearn.utils.testing import skip_if_32bit from sklearn.utils import check_random_state from sklearn.manifold.t_sne import _joint_probabilities from sklearn.manifold.t_sne import _joint_probabilities_nn from sklearn.manifold.t_sne import _kl_divergence from sklearn.manifold.t_sne import _kl_divergence_bh from sklearn.manifold.t_sne import _gradient_descent from sklearn.manifold.t_sne import trustworthiness from sklearn.manifold.t_sne import TSNE from sklearn.manifold import _barnes_hut_tsne from sklearn.manifold._utils import _binary_search_perplexity from sklearn.datasets import make_blobs from scipy.optimize import check_grad from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import cosine_distances x = np.linspace(0, 1, 10) xx, yy = np.meshgrid(x, x) X_2d_grid = np.hstack([ xx.ravel().reshape(-1, 1), yy.ravel().reshape(-1, 1), ]) def test_gradient_descent_stops(): # Test stopping conditions of gradient descent. class ObjectiveSmallGradient: def __init__(self): self.it = -1 def __call__(self, _): self.it += 1 return (10 - self.it) / 10.0, np.array([1e-5]) def flat_function(_): return 0.0, np.ones(1) # Gradient norm old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=1e-5, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 1.0) assert_equal(it, 0) assert("gradient norm" in out) # Maximum number of iterations without improvement old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( flat_function, np.zeros(1), 0, n_iter=100, n_iter_without_progress=10, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 11) assert("did not make any progress" in out) # Maximum number of iterations old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 10) assert("Iteration 10" in out) def test_binary_search(): # Test if the binary search finds Gaussians with desired perplexity. random_state = check_random_state(0) distances = random_state.randn(50, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) desired_perplexity = 25.0 P = _binary_search_perplexity(distances, None, desired_perplexity, verbose=0) P = np.maximum(P, np.finfo(np.double).eps) mean_perplexity = np.mean([np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])]) assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3) def test_binary_search_neighbors(): # Binary perplexity search approximation. # Should be approximately equal to the slow method when we use # all points as neighbors. n_samples = 500 desired_perplexity = 25.0 random_state = check_random_state(0) distances = random_state.randn(n_samples, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) P1 = _binary_search_perplexity(distances, None, desired_perplexity, verbose=0) # Test that when we use all the neighbors the results are identical k = n_samples neighbors_nn = np.argsort(distances, axis=1)[:, 1:k].astype(np.int64) distances_nn = np.array([distances[k, neighbors_nn[k]] for k in range(n_samples)]) P2 = _binary_search_perplexity(distances_nn, neighbors_nn, desired_perplexity, verbose=0) P_nn = np.array([P1[k, neighbors_nn[k]] for k in range(n_samples)]) assert_array_almost_equal(P_nn, P2, decimal=4) # Test that the highest P_ij are the same when few neighbors are used for k in np.linspace(80, n_samples, 5): k = int(k) topn = k * 10 # check the top 10 *k entries out of k * k entries neighbors_nn = np.argsort(distances, axis=1)[:, :k].astype(np.int64) distances_nn = np.array([distances[k, neighbors_nn[k]] for k in range(n_samples)]) P2k = _binary_search_perplexity(distances_nn, neighbors_nn, desired_perplexity, verbose=0) idx = np.argsort(P1.ravel())[::-1] P1top = P1.ravel()[idx][:topn] idx = np.argsort(P2k.ravel())[::-1] P2top = P2k.ravel()[idx][:topn] assert_array_almost_equal(P1top, P2top, decimal=2) def test_binary_perplexity_stability(): # Binary perplexity search should be stable. # The binary_search_perplexity had a bug wherein the P array # was uninitialized, leading to sporadically failing tests. k = 10 n_samples = 100 random_state = check_random_state(0) distances = random_state.randn(n_samples, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) last_P = None neighbors_nn = np.argsort(distances, axis=1)[:, :k].astype(np.int64) for _ in range(100): P = _binary_search_perplexity(distances.copy(), neighbors_nn.copy(), 3, verbose=0) P1 = _joint_probabilities_nn(distances, neighbors_nn, 3, verbose=0) # Convert the sparse matrix to a dense one for testing P1 = P1.toarray() if last_P is None: last_P = P last_P1 = P1 else: assert_array_almost_equal(P, last_P, decimal=4) assert_array_almost_equal(P1, last_P1, decimal=4) def test_gradient(): # Test gradient of Kullback-Leibler divergence. random_state = check_random_state(0) n_samples = 50 n_features = 2 n_components = 2 alpha = 1.0 distances = random_state.randn(n_samples, n_features).astype(np.float32) distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) X_embedded = random_state.randn(n_samples, n_components).astype(np.float32) P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0) def fun(params): return _kl_divergence(params, P, alpha, n_samples, n_components)[0] def grad(params): return _kl_divergence(params, P, alpha, n_samples, n_components)[1] assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5) def test_trustworthiness(): # Test trustworthiness score. random_state = check_random_state(0) # Affine transformation X = random_state.randn(100, 2) assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0) # Randomly shuffled X = np.arange(100).reshape(-1, 1) X_embedded = X.copy() random_state.shuffle(X_embedded) assert_less(trustworthiness(X, X_embedded), 0.6) # Completely different X = np.arange(5).reshape(-1, 1) X_embedded = np.array([[0], [2], [4], [1], [3]]) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2) def test_preserve_trustworthiness_approximately(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) n_components = 2 methods = ['exact', 'barnes_hut'] X = random_state.randn(50, n_components).astype(np.float32) for init in ('random', 'pca'): for method in methods: tsne = TSNE(n_components=n_components, init=init, random_state=0, method=method) X_embedded = tsne.fit_transform(X) t = trustworthiness(X, X_embedded, n_neighbors=1) assert_greater(t, 0.9) def test_optimization_minimizes_kl_divergence(): """t-SNE should give a lower KL divergence with more iterations.""" random_state = check_random_state(0) X, _ = make_blobs(n_features=3, random_state=random_state) kl_divergences = [] for n_iter in [250, 300, 350]: tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, n_iter=n_iter, random_state=0) tsne.fit_transform(X) kl_divergences.append(tsne.kl_divergence_) assert_less_equal(kl_divergences[1], kl_divergences[0]) assert_less_equal(kl_divergences[2], kl_divergences[1]) def test_fit_csr_matrix(): # X can be a sparse matrix. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, random_state=0, method='exact') X_embedded = tsne.fit_transform(X_csr) assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_preserve_trustworthiness_approximately_with_precomputed_distances(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) for i in range(3): X = random_state.randn(100, 2) D = squareform(pdist(X), "sqeuclidean") tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0, early_exaggeration=2.0, metric="precomputed", random_state=i, verbose=0) X_embedded = tsne.fit_transform(D) t = trustworthiness(D, X_embedded, n_neighbors=1, precomputed=True) assert t > .95 def test_early_exaggeration_too_small(): # Early exaggeration factor must be >= 1. tsne = TSNE(early_exaggeration=0.99) assert_raises_regexp(ValueError, "early_exaggeration .*", tsne.fit_transform, np.array([[0.0]])) def test_too_few_iterations(): # Number of gradient descent iterations must be at least 200. tsne = TSNE(n_iter=199) assert_raises_regexp(ValueError, "n_iter .*", tsne.fit_transform, np.array([[0.0]])) def test_non_square_precomputed_distances(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed") assert_raises_regexp(ValueError, ".* square distance matrix", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_non_positive_precomputed_distances(): # Precomputed distance matrices must be positive. bad_dist = np.array([[0., -1.], [1., 0.]]) for method in ['barnes_hut', 'exact']: tsne = TSNE(metric="precomputed", method=method) assert_raises_regexp(ValueError, "All distances .*precomputed.*", tsne.fit_transform, bad_dist) def test_non_positive_computed_distances(): # Computed distance matrices must be positive. def metric(x, y): return -1 tsne = TSNE(metric=metric, method='exact') X = np.array([[0.0, 0.0], [1.0, 1.0]]) assert_raises_regexp(ValueError, "All distances .*metric given.*", tsne.fit_transform, X) def test_init_not_available(): # 'init' must be 'pca', 'random', or numpy array. tsne = TSNE(init="not available") m = "'init' must be 'pca', 'random', or a numpy array" assert_raises_regexp(ValueError, m, tsne.fit_transform, np.array([[0.0], [1.0]])) def test_init_ndarray(): # Initialize TSNE with ndarray and test fit tsne = TSNE(init=np.zeros((100, 2))) X_embedded = tsne.fit_transform(np.ones((100, 5))) assert_array_equal(np.zeros((100, 2)), X_embedded) def test_init_ndarray_precomputed(): # Initialize TSNE with ndarray and metric 'precomputed' # Make sure no FutureWarning is thrown from _fit tsne = TSNE(init=np.zeros((100, 2)), metric="precomputed") tsne.fit(np.zeros((100, 100))) def test_distance_not_available(): # 'metric' must be valid. tsne = TSNE(metric="not available", method='exact') assert_raises_regexp(ValueError, "Unknown metric not available.*", tsne.fit_transform, np.array([[0.0], [1.0]])) tsne = TSNE(metric="not available", method='barnes_hut') assert_raises_regexp(ValueError, "Metric 'not available' not valid.*", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_method_not_available(): # 'nethod' must be 'barnes_hut' or 'exact' tsne = TSNE(method='not available') assert_raises_regexp(ValueError, "'method' must be 'barnes_hut' or ", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_angle_out_of_range_checks(): # check the angle parameter range for angle in [-1, -1e-6, 1 + 1e-6, 2]: tsne = TSNE(angle=angle) assert_raises_regexp(ValueError, "'angle' must be between 0.0 - 1.0", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_pca_initialization_not_compatible_with_precomputed_kernel(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed", init="pca") assert_raises_regexp(ValueError, "The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_n_components_range(): # barnes_hut method should only be used with n_components <= 3 tsne = TSNE(n_components=4, method="barnes_hut") assert_raises_regexp(ValueError, "'n_components' should be .*", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_early_exaggeration_used(): # check that the ``early_exaggeration`` parameter has an effect random_state = check_random_state(0) n_components = 2 methods = ['exact', 'barnes_hut'] X = random_state.randn(25, n_components).astype(np.float32) for method in methods: tsne = TSNE(n_components=n_components, perplexity=1, learning_rate=100.0, init="pca", random_state=0, method=method, early_exaggeration=1.0) X_embedded1 = tsne.fit_transform(X) tsne = TSNE(n_components=n_components, perplexity=1, learning_rate=100.0, init="pca", random_state=0, method=method, early_exaggeration=10.0) X_embedded2 = tsne.fit_transform(X) assert not np.allclose(X_embedded1, X_embedded2) def test_n_iter_used(): # check that the ``n_iter`` parameter has an effect random_state = check_random_state(0) n_components = 2 methods = ['exact', 'barnes_hut'] X = random_state.randn(25, n_components).astype(np.float32) for method in methods: for n_iter in [251, 500]: tsne = TSNE(n_components=n_components, perplexity=1, learning_rate=0.5, init="random", random_state=0, method=method, early_exaggeration=1.0, n_iter=n_iter) tsne.fit_transform(X) assert tsne.n_iter_ == n_iter - 1 def test_answer_gradient_two_points(): # Test the tree with only a single set of children. # # These tests & answers have been checked against the reference # implementation by LvdM. pos_input = np.array([[1.0, 0.0], [0.0, 1.0]]) pos_output = np.array([[-4.961291e-05, -1.072243e-04], [9.259460e-05, 2.702024e-04]]) neighbors = np.array([[1], [0]]) grad_output = np.array([[-2.37012478e-05, -6.29044398e-05], [2.37012478e-05, 6.29044398e-05]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output) def test_answer_gradient_four_points(): # Four points tests the tree with multiple levels of children. # # These tests & answers have been checked against the reference # implementation by LvdM. pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]]) pos_output = np.array([[6.080564e-05, -7.120823e-05], [-1.718945e-04, -4.000536e-05], [-2.271720e-04, 8.663310e-05], [-1.032577e-04, -3.582033e-05]]) neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]]) grad_output = np.array([[5.81128448e-05, -7.78033454e-06], [-5.81526851e-05, 7.80976444e-06], [4.24275173e-08, -3.69569698e-08], [-2.58720939e-09, 7.52706374e-09]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output) def test_skip_num_points_gradient(): # Test the kwargs option skip_num_points. # # Skip num points should make it such that the Barnes_hut gradient # is not calculated for indices below skip_num_point. # Aside from skip_num_points=2 and the first two gradient rows # being set to zero, these data points are the same as in # test_answer_gradient_four_points() pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]]) pos_output = np.array([[6.080564e-05, -7.120823e-05], [-1.718945e-04, -4.000536e-05], [-2.271720e-04, 8.663310e-05], [-1.032577e-04, -3.582033e-05]]) neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]]) grad_output = np.array([[0.0, 0.0], [0.0, 0.0], [4.24275173e-08, -3.69569698e-08], [-2.58720939e-09, 7.52706374e-09]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output, False, 0.1, 2) def _run_answer_test(pos_input, pos_output, neighbors, grad_output, verbose=False, perplexity=0.1, skip_num_points=0): distances = pairwise_distances(pos_input).astype(np.float32) args = distances, perplexity, verbose pos_output = pos_output.astype(np.float32) neighbors = neighbors.astype(np.int64) pij_input = _joint_probabilities(*args) pij_input = squareform(pij_input).astype(np.float32) grad_bh = np.zeros(pos_output.shape, dtype=np.float32) from scipy.sparse import csr_matrix P = csr_matrix(pij_input) neighbors = P.indices.astype(np.int64) indptr = P.indptr.astype(np.int64) _barnes_hut_tsne.gradient(P.data, pos_output, neighbors, indptr, grad_bh, 0.5, 2, 1, skip_num_points=0) assert_array_almost_equal(grad_bh, grad_output, decimal=4) def test_verbose(): # Verbose options write to stdout. random_state = check_random_state(0) tsne = TSNE(verbose=2) X = random_state.randn(5, 2) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[t-SNE]" in out) assert("nearest neighbors..." in out) assert("Computed conditional probabilities" in out) assert("Mean sigma" in out) assert("early exaggeration" in out) def test_chebyshev_metric(): # t-SNE should allow metrics that cannot be squared (issue #3526). random_state = check_random_state(0) tsne = TSNE(metric="chebyshev") X = random_state.randn(5, 2) tsne.fit_transform(X) def test_reduction_to_one_component(): # t-SNE should allow reduction to one component (issue #4154). random_state = check_random_state(0) tsne = TSNE(n_components=1) X = random_state.randn(5, 2) X_embedded = tsne.fit(X).embedding_ assert(np.all(np.isfinite(X_embedded))) def test_no_sparse_on_barnes_hut(): # No sparse matrices allowed on Barnes-Hut. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_iter=199, method='barnes_hut') assert_raises_regexp(TypeError, "A sparse matrix was.*", tsne.fit_transform, X_csr) def test_64bit(): # Ensure 64bit arrays are handled correctly. random_state = check_random_state(0) methods = ['barnes_hut', 'exact'] for method in methods: for dt in [np.float32, np.float64]: X = random_state.randn(50, 2).astype(dt) tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0, random_state=0, method=method, verbose=0) X_embedded = tsne.fit_transform(X) effective_type = X_embedded.dtype # tsne cython code is only single precision, so the output will # always be single precision, irrespectively of the input dtype assert effective_type == np.float32 def test_barnes_hut_angle(): # When Barnes-Hut's angle=0 this corresponds to the exact method. angle = 0.0 perplexity = 10 n_samples = 100 for n_components in [2, 3]: n_features = 5 degrees_of_freedom = float(n_components - 1.0) random_state = check_random_state(0) distances = random_state.randn(n_samples, n_features) distances = distances.astype(np.float32) distances = abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) params = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, perplexity, verbose=0) kl_exact, grad_exact = _kl_divergence(params, P, degrees_of_freedom, n_samples, n_components) k = n_samples - 1 bt = BallTree(distances) distances_nn, neighbors_nn = bt.query(distances, k=k + 1) neighbors_nn = neighbors_nn[:, 1:] distances_nn = np.array([distances[i, neighbors_nn[i]] for i in range(n_samples)]) assert np.all(distances[0, neighbors_nn[0]] == distances_nn[0]),\ abs(distances[0, neighbors_nn[0]] - distances_nn[0]) P_bh = _joint_probabilities_nn(distances_nn, neighbors_nn, perplexity, verbose=0) kl_bh, grad_bh = _kl_divergence_bh(params, P_bh, degrees_of_freedom, n_samples, n_components, angle=angle, skip_num_points=0, verbose=0) P = squareform(P) P_bh = P_bh.toarray() assert_array_almost_equal(P_bh, P, decimal=5) assert_almost_equal(kl_exact, kl_bh, decimal=3) @skip_if_32bit def test_n_iter_without_progress(): # Use a dummy negative n_iter_without_progress and check output on stdout random_state = check_random_state(0) X = random_state.randn(100, 10) for method in ["barnes_hut", "exact"]: tsne = TSNE(n_iter_without_progress=-1, verbose=2, learning_rate=1e8, random_state=0, method=method, n_iter=351, init="random") tsne._N_ITER_CHECK = 1 tsne._EXPLORATION_N_ITER = 0 old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout # The output needs to contain the value of n_iter_without_progress assert_in("did not make any progress during the " "last -1 episodes. Finished.", out) def test_min_grad_norm(): # Make sure that the parameter min_grad_norm is used correctly random_state = check_random_state(0) X = random_state.randn(100, 2) min_grad_norm = 0.002 tsne = TSNE(min_grad_norm=min_grad_norm, verbose=2, random_state=0, method='exact') old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout lines_out = out.split('\n') # extract the gradient norm from the verbose output gradient_norm_values = [] for line in lines_out: # When the computation is Finished just an old gradient norm value # is repeated that we do not need to store if 'Finished' in line: break start_grad_norm = line.find('gradient norm') if start_grad_norm >= 0: line = line[start_grad_norm:] line = line.replace('gradient norm = ', '').split(' ')[0] gradient_norm_values.append(float(line)) # Compute how often the gradient norm is smaller than min_grad_norm gradient_norm_values = np.array(gradient_norm_values) n_smaller_gradient_norms = \ len(gradient_norm_values[gradient_norm_values <= min_grad_norm]) # The gradient norm can be smaller than min_grad_norm at most once, # because in the moment it becomes smaller the optimization stops assert_less_equal(n_smaller_gradient_norms, 1) def test_accessible_kl_divergence(): # Ensures that the accessible kl_divergence matches the computed value random_state = check_random_state(0) X = random_state.randn(100, 2) tsne = TSNE(n_iter_without_progress=2, verbose=2, random_state=0, method='exact') old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout # The output needs to contain the accessible kl_divergence as the error at # the last iteration for line in out.split('\n')[::-1]: if 'Iteration' in line: _, _, error = line.partition('error = ') if error: error, _, _ = error.partition(',') break assert_almost_equal(tsne.kl_divergence_, float(error), decimal=5) def check_uniform_grid(method, seeds=[0, 1, 2], n_iter=1000): """Make sure that TSNE can approximately recover a uniform 2D grid Due to ties in distances between point in X_2d_grid, this test is platform dependent for ``method='barnes_hut'`` due to numerical imprecision. Also, t-SNE is not assured to converge to the right solution because bad initialization can lead to convergence to bad local minimum (the optimization problem is non-convex). To avoid breaking the test too often, we re-run t-SNE from the final point when the convergence is not good enough. """ for seed in seeds: tsne = TSNE(n_components=2, init='random', random_state=seed, perplexity=20, n_iter=n_iter, method=method) Y = tsne.fit_transform(X_2d_grid) try_name = "{}_{}".format(method, seed) try: assert_uniform_grid(Y, try_name) except AssertionError: # If the test fails a first time, re-run with init=Y to see if # this was caused by a bad initialization. Note that this will # also run an early_exaggeration step. try_name += ":rerun" tsne.init = Y Y = tsne.fit_transform(X_2d_grid) assert_uniform_grid(Y, try_name) def assert_uniform_grid(Y, try_name=None): # Ensure that the resulting embedding leads to approximately # uniformly spaced points: the distance to the closest neighbors # should be non-zero and approximately constant. nn = NearestNeighbors(n_neighbors=1).fit(Y) dist_to_nn = nn.kneighbors(return_distance=True)[0].ravel() assert dist_to_nn.min() > 0.1 smallest_to_mean = dist_to_nn.min() / np.mean(dist_to_nn) largest_to_mean = dist_to_nn.max() / np.mean(dist_to_nn) assert_greater(smallest_to_mean, .5, msg=try_name) assert_less(largest_to_mean, 2, msg=try_name) def test_uniform_grid(): for method in ['barnes_hut', 'exact']: yield check_uniform_grid, method def test_bh_match_exact(): # check that the ``barnes_hut`` method match the exact one when # ``angle = 0`` and ``perplexity > n_samples / 3`` random_state = check_random_state(0) n_features = 10 X = random_state.randn(30, n_features).astype(np.float32) X_embeddeds = {} n_iter = {} for method in ['exact', 'barnes_hut']: tsne = TSNE(n_components=2, method=method, learning_rate=1.0, init="random", random_state=0, n_iter=251, perplexity=30.0, angle=0) # Kill the early_exaggeration tsne._EXPLORATION_N_ITER = 0 X_embeddeds[method] = tsne.fit_transform(X) n_iter[method] = tsne.n_iter_ assert n_iter['exact'] == n_iter['barnes_hut'] assert_array_almost_equal(X_embeddeds['exact'], X_embeddeds['barnes_hut'], decimal=3) def test_tsne_with_different_distance_metrics(): """Make sure that TSNE works for different distance metrics""" random_state = check_random_state(0) n_components_original = 3 n_components_embedding = 2 X = random_state.randn(50, n_components_original).astype(np.float32) metrics = ['manhattan', 'cosine'] dist_funcs = [manhattan_distances, cosine_distances] for metric, dist_func in zip(metrics, dist_funcs): X_transformed_tsne = TSNE( metric=metric, n_components=n_components_embedding, random_state=0).fit_transform(X) X_transformed_tsne_precomputed = TSNE( metric='precomputed', n_components=n_components_embedding, random_state=0).fit_transform(dist_func(X)) assert_array_equal(X_transformed_tsne, X_transformed_tsne_precomputed)