"""Testing for Gaussian process regression """ # Author: Jan Hendrik Metzen # License: BSD 3 clause import numpy as np from scipy.optimize import approx_fprime from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels \ import RBF, ConstantKernel as C, WhiteKernel from sklearn.gaussian_process.kernels import DotProduct from sklearn.utils.testing \ import (assert_true, assert_greater, assert_array_less, assert_almost_equal, assert_equal, assert_raise_message, assert_array_almost_equal) def f(x): return x * np.sin(x) X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = f(X).ravel() fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed") kernels = [RBF(length_scale=1.0), fixed_kernel, RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) + C(1e-5, (1e-5, 1e2)), C(0.1, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) + C(1e-5, (1e-5, 1e2))] def test_gpr_interpolation(): # Test the interpolating property for different kernels. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_pred, y_cov = gpr.predict(X, return_cov=True) assert_almost_equal(y_pred, y) assert_almost_equal(np.diag(y_cov), 0.) def test_lml_improving(): # Test that hyperparameter-tuning improves log-marginal likelihood. for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood(kernel.theta)) def test_lml_precomputed(): # Test that lml of optimized kernel is stored correctly. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_equal(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood()) def test_converged_to_local_maximum(): # Test that we are in local maximum after hyperparameter-optimization. for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) lml, lml_gradient = \ gpr.log_marginal_likelihood(gpr.kernel_.theta, True) assert_true(np.all((np.abs(lml_gradient) < 1e-4) | (gpr.kernel_.theta == gpr.kernel_.bounds[:, 0]) | (gpr.kernel_.theta == gpr.kernel_.bounds[:, 1]))) def test_solution_inside_bounds(): # Test that hyperparameter-optimization remains in bounds# for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) bounds = gpr.kernel_.bounds max_ = np.finfo(gpr.kernel_.theta.dtype).max tiny = 1e-10 bounds[~np.isfinite(bounds[:, 1]), 1] = max_ assert_array_less(bounds[:, 0], gpr.kernel_.theta + tiny) assert_array_less(gpr.kernel_.theta, bounds[:, 1] + tiny) def test_lml_gradient(): # Compare analytic and numeric gradient of log marginal likelihood. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) lml, lml_gradient = gpr.log_marginal_likelihood(kernel.theta, True) lml_gradient_approx = \ approx_fprime(kernel.theta, lambda theta: gpr.log_marginal_likelihood(theta, False), 1e-10) assert_almost_equal(lml_gradient, lml_gradient_approx, 3) def test_prior(): # Test that GP prior has mean 0 and identical variances. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel) y_mean, y_cov = gpr.predict(X, return_cov=True) assert_almost_equal(y_mean, 0, 5) if len(gpr.kernel.theta) > 1: # XXX: quite hacky, works only for current kernels assert_almost_equal(np.diag(y_cov), np.exp(kernel.theta[0]), 5) else: assert_almost_equal(np.diag(y_cov), 1, 5) def test_sample_statistics(): # Test that statistics of samples drawn from GP are correct. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_mean, y_cov = gpr.predict(X2, return_cov=True) samples = gpr.sample_y(X2, 300000) # More digits accuracy would require many more samples assert_almost_equal(y_mean, np.mean(samples, 1), 1) assert_almost_equal(np.diag(y_cov) / np.diag(y_cov).max(), np.var(samples, 1) / np.diag(y_cov).max(), 1) def test_no_optimizer(): # Test that kernel parameters are unmodified when optimizer is None. kernel = RBF(1.0) gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None).fit(X, y) assert_equal(np.exp(gpr.kernel_.theta), 1.0) def test_predict_cov_vs_std(): # Test that predicted std.-dev. is consistent with cov's diagonal. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_mean, y_cov = gpr.predict(X2, return_cov=True) y_mean, y_std = gpr.predict(X2, return_std=True) assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std) def test_anisotropic_kernel(): # Test that GPR can identify meaningful anisotropic length-scales. # We learn a function which varies in one dimension ten-times slower # than in the other. The corresponding length-scales should differ by at # least a factor 5 rng = np.random.RandomState(0) X = rng.uniform(-1, 1, (50, 2)) y = X[:, 0] + 0.1 * X[:, 1] kernel = RBF([1.0, 1.0]) gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_greater(np.exp(gpr.kernel_.theta[1]), np.exp(gpr.kernel_.theta[0]) * 5) def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the log marginal likelihood of the chosen theta. n_samples, n_features = 25, 2 rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) \ + rng.normal(scale=0.1, size=n_samples) kernel = C(1.0, (1e-2, 1e2)) \ * RBF(length_scale=[1.0] * n_features, length_scale_bounds=[(1e-4, 1e+2)] * n_features) \ + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-5, 1e1)) last_lml = -np.inf for n_restarts_optimizer in range(5): gp = GaussianProcessRegressor( kernel=kernel, n_restarts_optimizer=n_restarts_optimizer, random_state=0,).fit(X, y) lml = gp.log_marginal_likelihood(gp.kernel_.theta) assert_greater(lml, last_lml - np.finfo(np.float32).eps) last_lml = lml def test_y_normalization(): # Test normalization of the target values in GP # Fitting non-normalizing GP on normalized y and fitting normalizing GP # on unnormalized y should yield identical results y_mean = y.mean(0) y_norm = y - y_mean for kernel in kernels: # Fit non-normalizing GP on normalized y gpr = GaussianProcessRegressor(kernel=kernel) gpr.fit(X, y_norm) # Fit normalizing GP on unnormalized y gpr_norm = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr_norm.fit(X, y) # Compare predicted mean, std-devs and covariances y_pred, y_pred_std = gpr.predict(X2, return_std=True) y_pred = y_mean + y_pred y_pred_norm, y_pred_std_norm = gpr_norm.predict(X2, return_std=True) assert_almost_equal(y_pred, y_pred_norm) assert_almost_equal(y_pred_std, y_pred_std_norm) _, y_cov = gpr.predict(X2, return_cov=True) _, y_cov_norm = gpr_norm.predict(X2, return_cov=True) assert_almost_equal(y_cov, y_cov_norm) def test_y_multioutput(): # Test that GPR can deal with multi-dimensional target values y_2d = np.vstack((y, y * 2)).T # Test for fixed kernel that first dimension of 2d GP equals the output # of 1d GP and that second dimension is twice as large kernel = RBF(length_scale=1.0) gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False) gpr.fit(X, y) gpr_2d = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False) gpr_2d.fit(X, y_2d) y_pred_1d, y_std_1d = gpr.predict(X2, return_std=True) y_pred_2d, y_std_2d = gpr_2d.predict(X2, return_std=True) _, y_cov_1d = gpr.predict(X2, return_cov=True) _, y_cov_2d = gpr_2d.predict(X2, return_cov=True) assert_almost_equal(y_pred_1d, y_pred_2d[:, 0]) assert_almost_equal(y_pred_1d, y_pred_2d[:, 1] / 2) # Standard deviation and covariance do not depend on output assert_almost_equal(y_std_1d, y_std_2d) assert_almost_equal(y_cov_1d, y_cov_2d) y_sample_1d = gpr.sample_y(X2, n_samples=10) y_sample_2d = gpr_2d.sample_y(X2, n_samples=10) assert_almost_equal(y_sample_1d, y_sample_2d[:, 0]) # Test hyperparameter optimization for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr.fit(X, y) gpr_2d = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr_2d.fit(X, np.vstack((y, y)).T) assert_almost_equal(gpr.kernel_.theta, gpr_2d.kernel_.theta, 4) def test_custom_optimizer(): # Test that GPR can use externally defined optimizers. # Define a dummy optimizer that simply tests 50 random hyperparameters def optimizer(obj_func, initial_theta, bounds): rng = np.random.RandomState(0) theta_opt, func_min = \ initial_theta, obj_func(initial_theta, eval_gradient=False) for _ in range(50): theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))) f = obj_func(theta, eval_gradient=False) if f < func_min: theta_opt, func_min = theta, f return theta_opt, func_min for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer) gpr.fit(X, y) # Checks that optimizer improved marginal likelihood assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood(gpr.kernel.theta)) def test_gpr_correct_error_message(): X = np.arange(12).reshape(6, -1) y = np.ones(6) kernel = DotProduct() gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.0) assert_raise_message(np.linalg.LinAlgError, "The kernel, %s, is not returning a " "positive definite matrix. Try gradually increasing " "the 'alpha' parameter of your " "GaussianProcessRegressor estimator." % kernel, gpr.fit, X, y) def test_duplicate_input(): # Test GPR can handle two different output-values for the same input. for kernel in kernels: gpr_equal_inputs = \ GaussianProcessRegressor(kernel=kernel, alpha=1e-2) gpr_similar_inputs = \ GaussianProcessRegressor(kernel=kernel, alpha=1e-2) X_ = np.vstack((X, X[0])) y_ = np.hstack((y, y[0] + 1)) gpr_equal_inputs.fit(X_, y_) X_ = np.vstack((X, X[0] + 1e-15)) y_ = np.hstack((y, y[0] + 1)) gpr_similar_inputs.fit(X_, y_) X_test = np.linspace(0, 10, 100)[:, None] y_pred_equal, y_std_equal = \ gpr_equal_inputs.predict(X_test, return_std=True) y_pred_similar, y_std_similar = \ gpr_similar_inputs.predict(X_test, return_std=True) assert_almost_equal(y_pred_equal, y_pred_similar) assert_almost_equal(y_std_equal, y_std_similar) def test_no_fit_default_predict(): # Test that GPR predictions without fit does not break by default. default_kernel = (C(1.0, constant_value_bounds="fixed") * RBF(1.0, length_scale_bounds="fixed")) gpr1 = GaussianProcessRegressor() _, y_std1 = gpr1.predict(X, return_std=True) _, y_cov1 = gpr1.predict(X, return_cov=True) gpr2 = GaussianProcessRegressor(kernel=default_kernel) _, y_std2 = gpr2.predict(X, return_std=True) _, y_cov2 = gpr2.predict(X, return_cov=True) assert_array_almost_equal(y_std1, y_std2) assert_array_almost_equal(y_cov1, y_cov2)