"""Utilities for fast persistence of big data, with optional compression.""" # Author: Gael Varoquaux # Copyright (c) 2009 Gael Varoquaux # License: BSD Style, 3 clauses. import pickle import os import sys import warnings try: from pathlib import Path except ImportError: Path = None from .numpy_pickle_utils import _COMPRESSORS from .numpy_pickle_utils import BinaryZlibFile from .numpy_pickle_utils import Unpickler, Pickler from .numpy_pickle_utils import _read_fileobject, _write_fileobject from .numpy_pickle_utils import _read_bytes, BUFFER_SIZE from .numpy_pickle_compat import load_compatibility from .numpy_pickle_compat import NDArrayWrapper # For compatibility with old versions of joblib, we need ZNDArrayWrapper # to be visible in the current namespace. # Explicitly skipping next line from flake8 as it triggers an F401 warning # which we don't care. from .numpy_pickle_compat import ZNDArrayWrapper # noqa from ._compat import _basestring, PY3_OR_LATER from .backports import make_memmap ############################################################################### # Utility objects for persistence. class NumpyArrayWrapper(object): """An object to be persisted instead of numpy arrays. This object is used to hack into the pickle machinery and read numpy array data from our custom persistence format. More precisely, this object is used for: * carrying the information of the persisted array: subclass, shape, order, dtype. Those ndarray metadata are used to correctly reconstruct the array with low level numpy functions. * determining if memmap is allowed on the array. * reading the array bytes from a file. * reading the array using memorymap from a file. * writing the array bytes to a file. Attributes ---------- subclass: numpy.ndarray subclass Determine the subclass of the wrapped array. shape: numpy.ndarray shape Determine the shape of the wrapped array. order: {'C', 'F'} Determine the order of wrapped array data. 'C' is for C order, 'F' is for fortran order. dtype: numpy.ndarray dtype Determine the data type of the wrapped array. allow_mmap: bool Determine if memory mapping is allowed on the wrapped array. Default: False. """ def __init__(self, subclass, shape, order, dtype, allow_mmap=False): """Constructor. Store the useful information for later.""" self.subclass = subclass self.shape = shape self.order = order self.dtype = dtype self.allow_mmap = allow_mmap def write_array(self, array, pickler): """Write array bytes to pickler file handle. This function is an adaptation of the numpy write_array function available in version 1.10.1 in numpy/lib/format.py. """ # Set buffer size to 16 MiB to hide the Python loop overhead. buffersize = max(16 * 1024 ** 2 // array.itemsize, 1) if array.dtype.hasobject: # We contain Python objects so we cannot write out the data # directly. Instead, we will pickle it out with version 2 of the # pickle protocol. pickle.dump(array, pickler.file_handle, protocol=2) else: for chunk in pickler.np.nditer(array, flags=['external_loop', 'buffered', 'zerosize_ok'], buffersize=buffersize, order=self.order): pickler.file_handle.write(chunk.tostring('C')) def read_array(self, unpickler): """Read array from unpickler file handle. This function is an adaptation of the numpy read_array function available in version 1.10.1 in numpy/lib/format.py. """ if len(self.shape) == 0: count = 1 else: count = unpickler.np.multiply.reduce(self.shape) # Now read the actual data. if self.dtype.hasobject: # The array contained Python objects. We need to unpickle the data. array = pickle.load(unpickler.file_handle) else: if (not PY3_OR_LATER and unpickler.np.compat.isfileobj(unpickler.file_handle)): # In python 2, gzip.GzipFile is considered as a file so one # can use numpy.fromfile(). # For file objects, use np.fromfile function. # This function is faster than the memory-intensive # method below. array = unpickler.np.fromfile(unpickler.file_handle, dtype=self.dtype, count=count) else: # This is not a real file. We have to read it the # memory-intensive way. # crc32 module fails on reads greater than 2 ** 32 bytes, # breaking large reads from gzip streams. Chunk reads to # BUFFER_SIZE bytes to avoid issue and reduce memory overhead # of the read. In non-chunked case count < max_read_count, so # only one read is performed. max_read_count = BUFFER_SIZE // min(BUFFER_SIZE, self.dtype.itemsize) array = unpickler.np.empty(count, dtype=self.dtype) for i in range(0, count, max_read_count): read_count = min(max_read_count, count - i) read_size = int(read_count * self.dtype.itemsize) data = _read_bytes(unpickler.file_handle, read_size, "array data") array[i:i + read_count] = \ unpickler.np.frombuffer(data, dtype=self.dtype, count=read_count) del data if self.order == 'F': array.shape = self.shape[::-1] array = array.transpose() else: array.shape = self.shape return array def read_mmap(self, unpickler): """Read an array using numpy memmap.""" offset = unpickler.file_handle.tell() if unpickler.mmap_mode == 'w+': unpickler.mmap_mode = 'r+' marray = make_memmap(unpickler.filename, dtype=self.dtype, shape=self.shape, order=self.order, mode=unpickler.mmap_mode, offset=offset) # update the offset so that it corresponds to the end of the read array unpickler.file_handle.seek(offset + marray.nbytes) return marray def read(self, unpickler): """Read the array corresponding to this wrapper. Use the unpickler to get all information to correctly read the array. Parameters ---------- unpickler: NumpyUnpickler Returns ------- array: numpy.ndarray """ # When requested, only use memmap mode if allowed. if unpickler.mmap_mode is not None and self.allow_mmap: array = self.read_mmap(unpickler) else: array = self.read_array(unpickler) # Manage array subclass case if (hasattr(array, '__array_prepare__') and self.subclass not in (unpickler.np.ndarray, unpickler.np.memmap)): # We need to reconstruct another subclass new_array = unpickler.np.core.multiarray._reconstruct( self.subclass, (0,), 'b') return new_array.__array_prepare__(array) else: return array ############################################################################### # Pickler classes class NumpyPickler(Pickler): """A pickler to persist big data efficiently. The main features of this object are: * persistence of numpy arrays in a single file. * optional compression with a special care on avoiding memory copies. Attributes ---------- fp: file File object handle used for serializing the input object. protocol: int Pickle protocol used. Default is pickle.DEFAULT_PROTOCOL under python 3, pickle.HIGHEST_PROTOCOL otherwise. """ dispatch = Pickler.dispatch.copy() def __init__(self, fp, protocol=None): self.file_handle = fp self.buffered = isinstance(self.file_handle, BinaryZlibFile) # By default we want a pickle protocol that only changes with # the major python version and not the minor one if protocol is None: protocol = (pickle.DEFAULT_PROTOCOL if PY3_OR_LATER else pickle.HIGHEST_PROTOCOL) Pickler.__init__(self, self.file_handle, protocol=protocol) # delayed import of numpy, to avoid tight coupling try: import numpy as np except ImportError: np = None self.np = np def _create_array_wrapper(self, array): """Create and returns a numpy array wrapper from a numpy array.""" order = 'F' if (array.flags.f_contiguous and not array.flags.c_contiguous) else 'C' allow_mmap = not self.buffered and not array.dtype.hasobject wrapper = NumpyArrayWrapper(type(array), array.shape, order, array.dtype, allow_mmap=allow_mmap) return wrapper def save(self, obj): """Subclass the Pickler `save` method. This is a total abuse of the Pickler class in order to use the numpy persistence function `save` instead of the default pickle implementation. The numpy array is replaced by a custom wrapper in the pickle persistence stack and the serialized array is written right after in the file. Warning: the file produced does not follow the pickle format. As such it can not be read with `pickle.load`. """ if self.np is not None and type(obj) in (self.np.ndarray, self.np.matrix, self.np.memmap): if type(obj) is self.np.memmap: # Pickling doesn't work with memmapped arrays obj = self.np.asanyarray(obj) # The array wrapper is pickled instead of the real array. wrapper = self._create_array_wrapper(obj) Pickler.save(self, wrapper) # A framer was introduced with pickle protocol 4 and we want to # ensure the wrapper object is written before the numpy array # buffer in the pickle file. # See https://www.python.org/dev/peps/pep-3154/#framing to get # more information on the framer behavior. if self.proto >= 4: self.framer.commit_frame(force=True) # And then array bytes are written right after the wrapper. wrapper.write_array(obj, self) return return Pickler.save(self, obj) class NumpyUnpickler(Unpickler): """A subclass of the Unpickler to unpickle our numpy pickles. Attributes ---------- mmap_mode: str The memorymap mode to use for reading numpy arrays. file_handle: file_like File object to unpickle from. filename: str Name of the file to unpickle from. It should correspond to file_handle. This parameter is required when using mmap_mode. np: module Reference to numpy module if numpy is installed else None. """ dispatch = Unpickler.dispatch.copy() def __init__(self, filename, file_handle, mmap_mode=None): # The next line is for backward compatibility with pickle generated # with joblib versions less than 0.10. self._dirname = os.path.dirname(filename) self.mmap_mode = mmap_mode self.file_handle = file_handle # filename is required for numpy mmap mode. self.filename = filename self.compat_mode = False Unpickler.__init__(self, self.file_handle) try: import numpy as np except ImportError: np = None self.np = np def load_build(self): """Called to set the state of a newly created object. We capture it to replace our place-holder objects, NDArrayWrapper or NumpyArrayWrapper, by the array we are interested in. We replace them directly in the stack of pickler. NDArrayWrapper is used for backward compatibility with joblib <= 0.9. """ Unpickler.load_build(self) # For backward compatibility, we support NDArrayWrapper objects. if isinstance(self.stack[-1], (NDArrayWrapper, NumpyArrayWrapper)): if self.np is None: raise ImportError("Trying to unpickle an ndarray, " "but numpy didn't import correctly") array_wrapper = self.stack.pop() # If any NDArrayWrapper is found, we switch to compatibility mode, # this will be used to raise a DeprecationWarning to the user at # the end of the unpickling. if isinstance(array_wrapper, NDArrayWrapper): self.compat_mode = True self.stack.append(array_wrapper.read(self)) # Be careful to register our new method. if PY3_OR_LATER: dispatch[pickle.BUILD[0]] = load_build else: dispatch[pickle.BUILD] = load_build ############################################################################### # Utility functions def dump(value, filename, compress=0, protocol=None, cache_size=None): """Persist an arbitrary Python object into one file. Parameters ----------- value: any Python object The object to store to disk. filename: str or pathlib.Path The path of the file in which it is to be stored. The compression method corresponding to one of the supported filename extensions ('.z', '.gz', '.bz2', '.xz' or '.lzma') will be used automatically. compress: int from 0 to 9 or bool or 2-tuple, optional Optional compression level for the data. 0 or False is no compression. Higher value means more compression, but also slower read and write times. Using a value of 3 is often a good compromise. See the notes for more details. If compress is True, the compression level used is 3. If compress is a 2-tuple, the first element must correspond to a string between supported compressors (e.g 'zlib', 'gzip', 'bz2', 'lzma' 'xz'), the second element must be an integer from 0 to 9, corresponding to the compression level. protocol: positive int Pickle protocol, see pickle.dump documentation for more details. cache_size: positive int, optional This option is deprecated in 0.10 and has no effect. Returns ------- filenames: list of strings The list of file names in which the data is stored. If compress is false, each array is stored in a different file. See Also -------- joblib.load : corresponding loader Notes ----- Memmapping on load cannot be used for compressed files. Thus using compression can significantly slow down loading. In addition, compressed files take extra extra memory during dump and load. """ if Path is not None and isinstance(filename, Path): filename = str(filename) is_filename = isinstance(filename, _basestring) is_fileobj = hasattr(filename, "write") compress_method = 'zlib' # zlib is the default compression method. if compress is True: # By default, if compress is enabled, we want to be using 3 by default compress_level = 3 elif isinstance(compress, tuple): # a 2-tuple was set in compress if len(compress) != 2: raise ValueError( 'Compress argument tuple should contain exactly 2 elements: ' '(compress method, compress level), you passed {}' .format(compress)) compress_method, compress_level = compress else: compress_level = compress if compress_level is not False and compress_level not in range(10): # Raising an error if a non valid compress level is given. raise ValueError( 'Non valid compress level given: "{}". Possible values are ' '{}.'.format(compress_level, list(range(10)))) if compress_method not in _COMPRESSORS: # Raising an error if an unsupported compression method is given. raise ValueError( 'Non valid compression method given: "{}". Possible values are ' '{}.'.format(compress_method, _COMPRESSORS)) if not is_filename and not is_fileobj: # People keep inverting arguments, and the resulting error is # incomprehensible raise ValueError( 'Second argument should be a filename or a file-like object, ' '%s (type %s) was given.' % (filename, type(filename)) ) if is_filename and not isinstance(compress, tuple): # In case no explicit compression was requested using both compression # method and level in a tuple and the filename has an explicit # extension, we select the corresponding compressor. if filename.endswith('.z'): compress_method = 'zlib' elif filename.endswith('.gz'): compress_method = 'gzip' elif filename.endswith('.bz2'): compress_method = 'bz2' elif filename.endswith('.lzma'): compress_method = 'lzma' elif filename.endswith('.xz'): compress_method = 'xz' else: # no matching compression method found, we unset the variable to # be sure no compression level is set afterwards. compress_method = None if compress_method in _COMPRESSORS and compress_level == 0: # we choose a default compress_level of 3 in case it was not given # as an argument (using compress). compress_level = 3 if not PY3_OR_LATER and compress_method in ('lzma', 'xz'): raise NotImplementedError("{} compression is only available for " "python version >= 3.3. You are using " "{}.{}".format(compress_method, sys.version_info[0], sys.version_info[1])) if cache_size is not None: # Cache size is deprecated starting from version 0.10 warnings.warn("Please do not set 'cache_size' in joblib.dump, " "this parameter has no effect and will be removed. " "You used 'cache_size={}'".format(cache_size), DeprecationWarning, stacklevel=2) if compress_level != 0: with _write_fileobject(filename, compress=(compress_method, compress_level)) as f: NumpyPickler(f, protocol=protocol).dump(value) elif is_filename: with open(filename, 'wb') as f: NumpyPickler(f, protocol=protocol).dump(value) else: NumpyPickler(filename, protocol=protocol).dump(value) # If the target container is a file object, nothing is returned. if is_fileobj: return # For compatibility, the list of created filenames (e.g with one element # after 0.10.0) is returned by default. return [filename] def _unpickle(fobj, filename="", mmap_mode=None): """Internal unpickling function.""" # We are careful to open the file handle early and keep it open to # avoid race-conditions on renames. # That said, if data is stored in companion files, which can be # the case with the old persistence format, moving the directory # will create a race when joblib tries to access the companion # files. unpickler = NumpyUnpickler(filename, fobj, mmap_mode=mmap_mode) obj = None try: obj = unpickler.load() if unpickler.compat_mode: warnings.warn("The file '%s' has been generated with a " "joblib version less than 0.10. " "Please regenerate this pickle file." % filename, DeprecationWarning, stacklevel=3) except UnicodeDecodeError as exc: # More user-friendly error message if PY3_OR_LATER: new_exc = ValueError( 'You may be trying to read with ' 'python 3 a joblib pickle generated with python 2. ' 'This feature is not supported by joblib.') new_exc.__cause__ = exc raise new_exc # Reraise exception with Python 2 raise return obj def load(filename, mmap_mode=None): """Reconstruct a Python object from a file persisted with joblib.dump. Parameters ----------- filename: str or pathlib.Path The path of the file from which to load the object mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional If not None, the arrays are memory-mapped from the disk. This mode has no effect for compressed files. Note that in this case the reconstructed object might not longer match exactly the originally pickled object. Returns ------- result: any Python object The object stored in the file. See Also -------- joblib.dump : function to save an object Notes ----- This function can load numpy array files saved separately during the dump. If the mmap_mode argument is given, it is passed to np.load and arrays are loaded as memmaps. As a consequence, the reconstructed object might not match the original pickled object. Note that if the file was saved with compression, the arrays cannot be memmaped. """ if Path is not None and isinstance(filename, Path): filename = str(filename) if hasattr(filename, "read"): fobj = filename filename = getattr(fobj, 'name', '') with _read_fileobject(fobj, filename, mmap_mode) as fobj: obj = _unpickle(fobj) else: with open(filename, 'rb') as f: with _read_fileobject(f, filename, mmap_mode) as fobj: if isinstance(fobj, _basestring): # if the returned file object is a string, this means we # try to load a pickle file generated with an version of # Joblib so we load it with joblib compatibility function. return load_compatibility(fobj) obj = _unpickle(fobj, filename, mmap_mode) return obj