""" Backends for embarrassingly parallel code. """ import gc import os import sys import warnings import threading from abc import ABCMeta, abstractmethod from .format_stack import format_exc from .my_exceptions import WorkerInterrupt, TransportableException from ._multiprocessing_helpers import mp from ._compat import with_metaclass if mp is not None: from .pool import MemmapingPool from multiprocessing.pool import ThreadPool class ParallelBackendBase(with_metaclass(ABCMeta)): """Helper abc which defines all methods a ParallelBackend must implement""" supports_timeout = False @abstractmethod def effective_n_jobs(self, n_jobs): """Determine the number of jobs that can actually run in parallel n_jobs is the number of workers requested by the callers. Passing n_jobs=-1 means requesting all available workers for instance matching the number of CPU cores on the worker host(s). This method should return a guesstimate of the number of workers that can actually perform work concurrently. The primary use case is to make it possible for the caller to know in how many chunks to slice the work. In general working on larger data chunks is more efficient (less scheduling overhead and better use of CPU cache prefetching heuristics) as long as all the workers have enough work to do. """ @abstractmethod def apply_async(self, func, callback=None): """Schedule a func to be run""" def configure(self, n_jobs=1, parallel=None, **backend_args): """Reconfigure the backend and return the number of workers. This makes it possible to reuse an existing backend instance for successive independent calls to Parallel with different parameters. """ self.parallel = parallel return self.effective_n_jobs(n_jobs) def terminate(self): """Shutdown the process or thread pool""" def compute_batch_size(self): """Determine the optimal batch size""" return 1 def batch_completed(self, batch_size, duration): """Callback indicate how long it took to run a batch""" def get_exceptions(self): """List of exception types to be captured.""" return [] def abort_everything(self, ensure_ready=True): """Abort any running tasks This is called when an exception has been raised when executing a tasks and all the remaining tasks will be ignored and can therefore be aborted to spare computation resources. If ensure_ready is True, the backend should be left in an operating state as future tasks might be re-submitted via that same backend instance. If ensure_ready is False, the implementer of this method can decide to leave the backend in a closed / terminated state as no new task are expected to be submitted to this backend. Setting ensure_ready to False is an optimization that can be leveraged when aborting tasks via killing processes from a local process pool managed by the backend it-self: if we expect no new tasks, there is no point in re-creating a new working pool. """ # Does nothing by default: to be overridden in subclasses when canceling # tasks is possible. pass class SequentialBackend(ParallelBackendBase): """A ParallelBackend which will execute all batches sequentially. Does not use/create any threading objects, and hence has minimal overhead. Used when n_jobs == 1. """ def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel""" if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') return 1 def apply_async(self, func, callback=None): """Schedule a func to be run""" result = ImmediateResult(func) if callback: callback(result) return result class PoolManagerMixin(object): """A helper class for managing pool of workers.""" def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel""" if n_jobs == 0: raise ValueError('n_jobs == 0 in Parallel has no meaning') elif mp is None or n_jobs is None: # multiprocessing is not available or disabled, fallback # to sequential mode return 1 elif n_jobs < 0: n_jobs = max(mp.cpu_count() + 1 + n_jobs, 1) return n_jobs def terminate(self): """Shutdown the process or thread pool""" if self._pool is not None: self._pool.close() self._pool.terminate() # terminate does a join() self._pool = None def apply_async(self, func, callback=None): """Schedule a func to be run""" return self._pool.apply_async(SafeFunction(func), callback=callback) def abort_everything(self, ensure_ready=True): """Shutdown the pool and restart a new one with the same parameters""" self.terminate() if ensure_ready: self.configure(n_jobs=self.parallel.n_jobs, parallel=self.parallel, **self.parallel._backend_args) class AutoBatchingMixin(object): """A helper class for automagically batching jobs.""" # In seconds, should be big enough to hide multiprocessing dispatching # overhead. # This settings was found by running benchmarks/bench_auto_batching.py # with various parameters on various platforms. MIN_IDEAL_BATCH_DURATION = .2 # Should not be too high to avoid stragglers: long jobs running alone # on a single worker while other workers have no work to process any more. MAX_IDEAL_BATCH_DURATION = 2 # Batching counters _effective_batch_size = 1 _smoothed_batch_duration = 0.0 def compute_batch_size(self): """Determine the optimal batch size""" old_batch_size = self._effective_batch_size batch_duration = self._smoothed_batch_duration if (batch_duration > 0 and batch_duration < self.MIN_IDEAL_BATCH_DURATION): # The current batch size is too small: the duration of the # processing of a batch of task is not large enough to hide # the scheduling overhead. ideal_batch_size = int(old_batch_size * self.MIN_IDEAL_BATCH_DURATION / batch_duration) # Multiply by two to limit oscilations between min and max. batch_size = max(2 * ideal_batch_size, 1) self._effective_batch_size = batch_size if self.parallel.verbose >= 10: self.parallel._print( "Batch computation too fast (%.4fs.) " "Setting batch_size=%d.", (batch_duration, batch_size)) elif (batch_duration > self.MAX_IDEAL_BATCH_DURATION and old_batch_size >= 2): # The current batch size is too big. If we schedule overly long # running batches some CPUs might wait with nothing left to do # while a couple of CPUs a left processing a few long running # batches. Better reduce the batch size a bit to limit the # likelihood of scheduling such stragglers. batch_size = old_batch_size // 2 self._effective_batch_size = batch_size if self.parallel.verbose >= 10: self.parallel._print( "Batch computation too slow (%.4fs.) " "Setting batch_size=%d.", (batch_duration, batch_size)) else: # No batch size adjustment batch_size = old_batch_size if batch_size != old_batch_size: # Reset estimation of the smoothed mean batch duration: this # estimate is updated in the multiprocessing apply_async # CallBack as long as the batch_size is constant. Therefore # we need to reset the estimate whenever we re-tune the batch # size. self._smoothed_batch_duration = 0 return batch_size def batch_completed(self, batch_size, duration): """Callback indicate how long it took to run a batch""" if batch_size == self._effective_batch_size: # Update the smoothed streaming estimate of the duration of a batch # from dispatch to completion old_duration = self._smoothed_batch_duration if old_duration == 0: # First record of duration for this batch size after the last # reset. new_duration = duration else: # Update the exponentially weighted average of the duration of # batch for the current effective size. new_duration = 0.8 * old_duration + 0.2 * duration self._smoothed_batch_duration = new_duration class ThreadingBackend(PoolManagerMixin, ParallelBackendBase): """A ParallelBackend which will use a thread pool to execute batches in. This is a low-overhead backend but it suffers from the Python Global Interpreter Lock if the called function relies a lot on Python objects. Mostly useful when the execution bottleneck is a compiled extension that explicitly releases the GIL (for instance a Cython loop wrapped in a "with nogil" block or an expensive call to a library such as NumPy). """ supports_timeout = True def configure(self, n_jobs=1, parallel=None, **backend_args): """Build a process or thread pool and return the number of workers""" n_jobs = self.effective_n_jobs(n_jobs) if n_jobs == 1: # Avoid unnecessary overhead and use sequential backend instead. raise FallbackToBackend(SequentialBackend()) self.parallel = parallel self._pool = ThreadPool(n_jobs) return n_jobs class MultiprocessingBackend(PoolManagerMixin, AutoBatchingMixin, ParallelBackendBase): """A ParallelBackend which will use a multiprocessing.Pool. Will introduce some communication and memory overhead when exchanging input and output data with the with the worker Python processes. However, does not suffer from the Python Global Interpreter Lock. """ # Environment variables to protect against bad situations when nesting JOBLIB_SPAWNED_PROCESS = "__JOBLIB_SPAWNED_PARALLEL__" supports_timeout = True def effective_n_jobs(self, n_jobs): """Determine the number of jobs which are going to run in parallel. This also checks if we are attempting to create a nested parallel loop. """ if mp is None: return 1 if mp.current_process().daemon: # Daemonic processes cannot have children if n_jobs != 1: warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested,' ' setting n_jobs=1', stacklevel=3) return 1 if not isinstance(threading.current_thread(), threading._MainThread): # Prevent posix fork inside in non-main posix threads warnings.warn( 'Multiprocessing-backed parallel loops cannot be nested' ' below threads, setting n_jobs=1', stacklevel=3) return 1 return super(MultiprocessingBackend, self).effective_n_jobs(n_jobs) def configure(self, n_jobs=1, parallel=None, **backend_args): """Build a process or thread pool and return the number of workers""" n_jobs = self.effective_n_jobs(n_jobs) if n_jobs == 1: raise FallbackToBackend(SequentialBackend()) already_forked = int(os.environ.get(self.JOBLIB_SPAWNED_PROCESS, 0)) if already_forked: raise ImportError( '[joblib] Attempting to do parallel computing ' 'without protecting your import on a system that does ' 'not support forking. To use parallel-computing in a ' 'script, you must protect your main loop using "if ' "__name__ == '__main__'" '". Please see the joblib documentation on Parallel ' 'for more information') # Set an environment variable to avoid infinite loops os.environ[self.JOBLIB_SPAWNED_PROCESS] = '1' # Make sure to free as much memory as possible before forking gc.collect() self._pool = MemmapingPool(n_jobs, **backend_args) self.parallel = parallel return n_jobs def terminate(self): """Shutdown the process or thread pool""" super(MultiprocessingBackend, self).terminate() if self.JOBLIB_SPAWNED_PROCESS in os.environ: del os.environ[self.JOBLIB_SPAWNED_PROCESS] class ImmediateResult(object): def __init__(self, batch): # Don't delay the application, to avoid keeping the input # arguments in memory self.results = batch() def get(self): return self.results class SafeFunction(object): """Wrapper that handles the serialization of exception tracebacks. If an exception is triggered when calling the inner function, a copy of the full traceback is captured to make it possible to serialize it so that it can be rendered in a different Python process. """ def __init__(self, func): self.func = func def __call__(self, *args, **kwargs): try: return self.func(*args, **kwargs) except KeyboardInterrupt: # We capture the KeyboardInterrupt and reraise it as # something different, as multiprocessing does not # interrupt processing for a KeyboardInterrupt raise WorkerInterrupt() except: e_type, e_value, e_tb = sys.exc_info() text = format_exc(e_type, e_value, e_tb, context=10, tb_offset=1) raise TransportableException(text, e_type) class FallbackToBackend(Exception): """Raised when configuration should fallback to another backend""" def __init__(self, backend): self.backend = backend