import numpy as np import scipy.sparse as sp import numbers from scipy import linalg from sklearn.decomposition import NMF, non_negative_factorization from sklearn.decomposition import nmf # For testing internals from scipy.sparse import csc_matrix from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raise_message, assert_no_warnings from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.utils.extmath import squared_norm from sklearn.base import clone from sklearn.exceptions import ConvergenceWarning def test_initialize_nn_output(): # Test that initialization does not return negative values rng = np.random.mtrand.RandomState(42) data = np.abs(rng.randn(10, 10)) for init in ('random', 'nndsvd', 'nndsvda', 'nndsvdar'): W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0) assert_false((W < 0).any() or (H < 0).any()) def test_parameter_checking(): A = np.ones((2, 2)) name = 'spam' msg = "Invalid solver parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, NMF(solver=name).fit, A) msg = "Invalid init parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, NMF(init=name).fit, A) msg = "Invalid beta_loss parameter: got 'spam' instead of one" assert_raise_message(ValueError, msg, NMF(solver='mu', beta_loss=name).fit, A) msg = "Invalid beta_loss parameter: solver 'cd' does not handle " msg += "beta_loss = 1.0" assert_raise_message(ValueError, msg, NMF(solver='cd', beta_loss=1.0).fit, A) msg = "Negative values in data passed to" assert_raise_message(ValueError, msg, NMF().fit, -A) assert_raise_message(ValueError, msg, nmf._initialize_nmf, -A, 2, 'nndsvd') clf = NMF(2, tol=0.1).fit(A) assert_raise_message(ValueError, msg, clf.transform, -A) def test_initialize_close(): # Test NNDSVD error # Test that _initialize_nmf error is less than the standard deviation of # the entries in the matrix. rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10, init='nndsvd') error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert_true(error <= sdev) def test_initialize_variants(): # Test NNDSVD variants correctness # Test that the variants 'nndsvda' and 'nndsvdar' differ from basic # 'nndsvd' only where the basic version has zeros. rng = np.random.mtrand.RandomState(42) data = np.abs(rng.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, init='nndsvd') Wa, Ha = nmf._initialize_nmf(data, 10, init='nndsvda') War, Har = nmf._initialize_nmf(data, 10, init='nndsvdar', random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_almost_equal(evl[ref != 0], ref[ref != 0]) # ignore UserWarning raised when both solver='mu' and init='nndsvd' @ignore_warnings(category=UserWarning) def test_nmf_fit_nn_output(): # Test that the decomposition does not contain negative values A = np.c_[5 * np.ones(5) - np.arange(1, 6), 5 * np.ones(5) + np.arange(1, 6)] for solver in ('cd', 'mu'): for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'): model = NMF(n_components=2, solver=solver, init=init, random_state=0) transf = model.fit_transform(A) assert_false((model.components_ < 0).any() or (transf < 0).any()) def test_nmf_fit_close(): rng = np.random.mtrand.RandomState(42) # Test that the fit is not too far away for solver in ('cd', 'mu'): pnmf = NMF(5, solver=solver, init='nndsvdar', random_state=0, max_iter=600) X = np.abs(rng.randn(6, 5)) assert_less(pnmf.fit(X).reconstruction_err_, 0.1) def test_nmf_transform(): # Test that NMF.transform returns close values rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(6, 5)) for solver in ['cd', 'mu']: m = NMF(solver=solver, n_components=3, init='random', random_state=0, tol=1e-5) ft = m.fit_transform(A) t = m.transform(A) assert_array_almost_equal(ft, t, decimal=2) def test_nmf_transform_custom_init(): # Smoke test that checks if NMF.transform works with custom initialization random_state = np.random.RandomState(0) A = np.abs(random_state.randn(6, 5)) n_components = 4 avg = np.sqrt(A.mean() / n_components) H_init = np.abs(avg * random_state.randn(n_components, 5)) W_init = np.abs(avg * random_state.randn(6, n_components)) m = NMF(solver='cd', n_components=n_components, init='custom', random_state=0) m.fit_transform(A, W=W_init, H=H_init) m.transform(A) def test_nmf_inverse_transform(): # Test that NMF.inverse_transform returns close values random_state = np.random.RandomState(0) A = np.abs(random_state.randn(6, 4)) for solver in ('cd', 'mu'): m = NMF(solver=solver, n_components=4, init='random', random_state=0, max_iter=1000) ft = m.fit_transform(A) A_new = m.inverse_transform(ft) assert_array_almost_equal(A, A_new, decimal=2) def test_n_components_greater_n_features(): # Smoke test for the case of more components than features. rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(30, 10)) NMF(n_components=15, random_state=0, tol=1e-2).fit(A) def test_nmf_sparse_input(): # Test that sparse matrices are accepted as input from scipy.sparse import csc_matrix rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 A_sparse = csc_matrix(A) for solver in ('cd', 'mu'): est1 = NMF(solver=solver, n_components=5, init='random', random_state=0, tol=1e-2) est2 = clone(est1) W1 = est1.fit_transform(A) W2 = est2.fit_transform(A_sparse) H1 = est1.components_ H2 = est2.components_ assert_array_almost_equal(W1, W2) assert_array_almost_equal(H1, H2) def test_nmf_sparse_transform(): # Test that transform works on sparse data. Issue #2124 rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(3, 2)) A[1, 1] = 0 A = csc_matrix(A) for solver in ('cd', 'mu'): model = NMF(solver=solver, random_state=0, n_components=2, max_iter=400) A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) assert_array_almost_equal(A_fit_tr, A_tr, decimal=1) def test_non_negative_factorization_consistency(): # Test that the function is called in the same way, either directly # or through the NMF class rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 for solver in ('cd', 'mu'): W_nmf, H, _ = non_negative_factorization( A, solver=solver, random_state=1, tol=1e-2) W_nmf_2, _, _ = non_negative_factorization( A, H=H, update_H=False, solver=solver, random_state=1, tol=1e-2) model_class = NMF(solver=solver, random_state=1, tol=1e-2) W_cls = model_class.fit_transform(A) W_cls_2 = model_class.transform(A) assert_array_almost_equal(W_nmf, W_cls, decimal=10) assert_array_almost_equal(W_nmf_2, W_cls_2, decimal=10) def test_non_negative_factorization_checking(): A = np.ones((2, 2)) # Test parameters checking is public function nnmf = non_negative_factorization assert_no_warnings(nnmf, A, A, A, np.int64(1)) msg = ("Number of components must be a positive integer; " "got (n_components=1.5)") assert_raise_message(ValueError, msg, nnmf, A, A, A, 1.5) msg = ("Number of components must be a positive integer; " "got (n_components='2')") assert_raise_message(ValueError, msg, nnmf, A, A, A, '2') msg = "Negative values in data passed to NMF (input H)" assert_raise_message(ValueError, msg, nnmf, A, A, -A, 2, 'custom') msg = "Negative values in data passed to NMF (input W)" assert_raise_message(ValueError, msg, nnmf, A, -A, A, 2, 'custom') msg = "Array passed to NMF (input H) is full of zeros" assert_raise_message(ValueError, msg, nnmf, A, A, 0 * A, 2, 'custom') msg = "Invalid regularization parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, nnmf, A, A, 0 * A, 2, 'custom', True, 'cd', 2., 1e-4, 200, 0., 0., 'spam') def _beta_divergence_dense(X, W, H, beta): """Compute the beta-divergence of X and W.H for dense array only. Used as a reference for testing nmf._beta_divergence. """ if isinstance(X, numbers.Number): W = np.array([[W]]) H = np.array([[H]]) X = np.array([[X]]) WH = np.dot(W, H) if beta == 2: return squared_norm(X - WH) / 2 WH_Xnonzero = WH[X != 0] X_nonzero = X[X != 0] np.maximum(WH_Xnonzero, 1e-9, out=WH_Xnonzero) if beta == 1: res = np.sum(X_nonzero * np.log(X_nonzero / WH_Xnonzero)) res += WH.sum() - X.sum() elif beta == 0: div = X_nonzero / WH_Xnonzero res = np.sum(div) - X.size - np.sum(np.log(div)) else: res = (X_nonzero ** beta).sum() res += (beta - 1) * (WH ** beta).sum() res -= beta * (X_nonzero * (WH_Xnonzero ** (beta - 1))).sum() res /= beta * (beta - 1) return res def test_beta_divergence(): # Compare _beta_divergence with the reference _beta_divergence_dense n_samples = 20 n_features = 10 n_components = 5 beta_losses = [0., 0.5, 1., 1.5, 2.] # initialization rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) X[X < 0] = 0. X_csr = sp.csr_matrix(X) W, H = nmf._initialize_nmf(X, n_components, init='random', random_state=42) for beta in beta_losses: ref = _beta_divergence_dense(X, W, H, beta) loss = nmf._beta_divergence(X, W, H, beta) loss_csr = nmf._beta_divergence(X_csr, W, H, beta) assert_almost_equal(ref, loss, decimal=7) assert_almost_equal(ref, loss_csr, decimal=7) def test_special_sparse_dot(): # Test the function that computes np.dot(W, H), only where X is non zero. n_samples = 10 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) X[X < 0] = 0. X_csr = sp.csr_matrix(X) W = np.abs(rng.randn(n_samples, n_components)) H = np.abs(rng.randn(n_components, n_features)) WH_safe = nmf._special_sparse_dot(W, H, X_csr) WH = nmf._special_sparse_dot(W, H, X) # test that both results have same values, in X_csr nonzero elements ii, jj = X_csr.nonzero() WH_safe_data = np.asarray(WH_safe[ii, jj]).ravel() assert_array_almost_equal(WH_safe_data, WH[ii, jj], decimal=10) # test that WH_safe and X_csr have the same sparse structure assert_array_equal(WH_safe.indices, X_csr.indices) assert_array_equal(WH_safe.indptr, X_csr.indptr) assert_array_equal(WH_safe.shape, X_csr.shape) @ignore_warnings(category=ConvergenceWarning) def test_nmf_multiplicative_update_sparse(): # Compare sparse and dense input in multiplicative update NMF # Also test continuity of the results with respect to beta_loss parameter n_samples = 20 n_features = 10 n_components = 5 alpha = 0.1 l1_ratio = 0.5 n_iter = 20 # initialization rng = np.random.mtrand.RandomState(1337) X = rng.randn(n_samples, n_features) X = np.abs(X) X_csr = sp.csr_matrix(X) W0, H0 = nmf._initialize_nmf(X, n_components, init='random', random_state=42) for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5): # Reference with dense array X W, H = W0.copy(), H0.copy() W1, H1, _ = non_negative_factorization( X, W, H, n_components, init='custom', update_H=True, solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha, l1_ratio=l1_ratio, regularization='both', random_state=42) # Compare with sparse X W, H = W0.copy(), H0.copy() W2, H2, _ = non_negative_factorization( X_csr, W, H, n_components, init='custom', update_H=True, solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha, l1_ratio=l1_ratio, regularization='both', random_state=42) assert_array_almost_equal(W1, W2, decimal=7) assert_array_almost_equal(H1, H2, decimal=7) # Compare with almost same beta_loss, since some values have a specific # behavior, but the results should be continuous w.r.t beta_loss beta_loss -= 1.e-5 W, H = W0.copy(), H0.copy() W3, H3, _ = non_negative_factorization( X_csr, W, H, n_components, init='custom', update_H=True, solver='mu', beta_loss=beta_loss, max_iter=n_iter, alpha=alpha, l1_ratio=l1_ratio, regularization='both', random_state=42) assert_array_almost_equal(W1, W3, decimal=4) assert_array_almost_equal(H1, H3, decimal=4) def test_nmf_negative_beta_loss(): # Test that an error is raised if beta_loss < 0 and X contains zeros. # Test that the output has not NaN values when the input contains zeros. n_samples = 6 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) X[X < 0] = 0 X_csr = sp.csr_matrix(X) def _assert_nmf_no_nan(X, beta_loss): W, H, _ = non_negative_factorization( X, n_components=n_components, solver='mu', beta_loss=beta_loss, random_state=0, max_iter=1000) assert_false(np.any(np.isnan(W))) assert_false(np.any(np.isnan(H))) msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge." for beta_loss in (-0.6, 0.): assert_raise_message(ValueError, msg, _assert_nmf_no_nan, X, beta_loss) _assert_nmf_no_nan(X + 1e-9, beta_loss) for beta_loss in (0.2, 1., 1.2, 2., 2.5): _assert_nmf_no_nan(X, beta_loss) _assert_nmf_no_nan(X_csr, beta_loss) def test_nmf_regularization(): # Test the effect of L1 and L2 regularizations n_samples = 6 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = np.abs(rng.randn(n_samples, n_features)) # L1 regularization should increase the number of zeros l1_ratio = 1. for solver in ['cd', 'mu']: regul = nmf.NMF(n_components=n_components, solver=solver, alpha=0.5, l1_ratio=l1_ratio, random_state=42) model = nmf.NMF(n_components=n_components, solver=solver, alpha=0., l1_ratio=l1_ratio, random_state=42) W_regul = regul.fit_transform(X) W_model = model.fit_transform(X) H_regul = regul.components_ H_model = model.components_ W_regul_n_zeros = W_regul[W_regul == 0].size W_model_n_zeros = W_model[W_model == 0].size H_regul_n_zeros = H_regul[H_regul == 0].size H_model_n_zeros = H_model[H_model == 0].size assert_greater(W_regul_n_zeros, W_model_n_zeros) assert_greater(H_regul_n_zeros, H_model_n_zeros) # L2 regularization should decrease the mean of the coefficients l1_ratio = 0. for solver in ['cd', 'mu']: regul = nmf.NMF(n_components=n_components, solver=solver, alpha=0.5, l1_ratio=l1_ratio, random_state=42) model = nmf.NMF(n_components=n_components, solver=solver, alpha=0., l1_ratio=l1_ratio, random_state=42) W_regul = regul.fit_transform(X) W_model = model.fit_transform(X) H_regul = regul.components_ H_model = model.components_ assert_greater(W_model.mean(), W_regul.mean()) assert_greater(H_model.mean(), H_regul.mean()) @ignore_warnings(category=ConvergenceWarning) def test_nmf_decreasing(): # test that the objective function is decreasing at each iteration n_samples = 20 n_features = 15 n_components = 10 alpha = 0.1 l1_ratio = 0.5 tol = 0. # initialization rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) np.abs(X, X) W0, H0 = nmf._initialize_nmf(X, n_components, init='random', random_state=42) for beta_loss in (-1.2, 0, 0.2, 1., 2., 2.5): for solver in ('cd', 'mu'): if solver != 'mu' and beta_loss != 2: # not implemented continue W, H = W0.copy(), H0.copy() previous_loss = None for _ in range(30): # one more iteration starting from the previous results W, H, _ = non_negative_factorization( X, W, H, beta_loss=beta_loss, init='custom', n_components=n_components, max_iter=1, alpha=alpha, solver=solver, tol=tol, l1_ratio=l1_ratio, verbose=0, regularization='both', random_state=0, update_H=True) loss = nmf._beta_divergence(X, W, H, beta_loss) if previous_loss is not None: assert_greater(previous_loss, loss) previous_loss = loss