""" Principal Component Analysis """ # Author: Alexandre Gramfort # Olivier Grisel # Mathieu Blondel # Denis A. Engemann # Michael Eickenberg # Giorgio Patrini # # License: BSD 3 clause from math import log, sqrt import numpy as np from scipy import linalg from scipy.special import gammaln from scipy.sparse import issparse from scipy.sparse.linalg import svds from ..externals import six from .base import _BasePCA from ..base import BaseEstimator, TransformerMixin from ..utils import deprecated from ..utils import check_random_state, as_float_array from ..utils import check_array from ..utils.extmath import fast_logdet, randomized_svd, svd_flip from ..utils.extmath import stable_cumsum from ..utils.validation import check_is_fitted def _assess_dimension_(spectrum, rank, n_samples, n_features): """Compute the likelihood of a rank ``rank`` dataset The dataset is assumed to be embedded in gaussian noise of shape(n, dimf) having spectrum ``spectrum``. Parameters ---------- spectrum : array of shape (n) Data spectrum. rank : int Tested rank value. n_samples : int Number of samples. n_features : int Number of features. Returns ------- ll : float, The log-likelihood Notes ----- This implements the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` """ if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the" " dataset") pu = -rank * log(2.) for i in range(rank): pu += (gammaln((n_features - i) / 2.) - log(np.pi) * (n_features - i) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank + 1.) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def _infer_dimension_(spectrum, n_samples, n_features): """Infers the dimension of a dataset of shape (n_samples, n_features) The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() class PCA(_BasePCA): """Principal component analysis (PCA) Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko et al. 2009, depending on the shape of the input data and the number of components to extract. It can also use the scipy.sparse.linalg ARPACK implementation of the truncated SVD. Notice that this class does not support sparse input. See :class:`TruncatedSVD` for an alternative with sparse data. Read more in the :ref:`User Guide `. Parameters ---------- n_components : int, float, None or string Number of components to keep. if n_components is not set all components are kept:: n_components == min(n_samples, n_features) if n_components == 'mle' and svd_solver == 'full', Minka\'s MLE is used to guess the dimension if ``0 < n_components < 1`` and svd_solver == 'full', select the number of components such that the amount of variance that needs to be explained is greater than the percentage specified by n_components n_components cannot be equal to n_features for svd_solver == 'arpack'. copy : bool (default True) If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. whiten : bool, optional (default False) When True (False by default) the `components_` vectors are multiplied by the square root of n_samples and then divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. svd_solver : string {'auto', 'full', 'arpack', 'randomized'} auto : the solver is selected by a default policy based on `X.shape` and `n_components`: if the input data is larger than 500x500 and the number of components to extract is lower than 80% of the smallest dimension of the data, then the more efficient 'randomized' method is enabled. Otherwise the exact full SVD is computed and optionally truncated afterwards. full : run exact full SVD calling the standard LAPACK solver via `scipy.linalg.svd` and select the components by postprocessing arpack : run SVD truncated to n_components calling ARPACK solver via `scipy.sparse.linalg.svds`. It requires strictly 0 < n_components < X.shape[1] randomized : run randomized SVD by the method of Halko et al. .. versionadded:: 0.18.0 tol : float >= 0, optional (default .0) Tolerance for singular values computed by svd_solver == 'arpack'. .. versionadded:: 0.18.0 iterated_power : int >= 0, or 'auto', (default 'auto') Number of iterations for the power method computed by svd_solver == 'randomized'. .. versionadded:: 0.18.0 random_state : int, RandomState instance or None, optional (default None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``svd_solver`` == 'arpack' or 'randomized'. .. versionadded:: 0.18.0 Attributes ---------- components_ : array, shape (n_components, n_features) Principal axes in feature space, representing the directions of maximum variance in the data. The components are sorted by ``explained_variance_``. explained_variance_ : array, shape (n_components,) The amount of variance explained by each of the selected components. Equal to n_components largest eigenvalues of the covariance matrix of X. .. versionadded:: 0.18 explained_variance_ratio_ : array, shape (n_components,) Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0. singular_values_ : array, shape (n_components,) The singular values corresponding to each of the selected components. The singular values are equal to the 2-norms of the ``n_components`` variables in the lower-dimensional space. mean_ : array, shape (n_features,) Per-feature empirical mean, estimated from the training set. Equal to `X.mean(axis=0)`. n_components_ : int The estimated number of components. When n_components is set to 'mle' or a number between 0 and 1 (with svd_solver == 'full') this number is estimated from input data. Otherwise it equals the parameter n_components, or n_features if n_components is None. noise_variance_ : float The estimated noise covariance following the Probabilistic PCA model from Tipping and Bishop 1999. See "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required to computed the estimated data covariance and score samples. Equal to the average of (min(n_features, n_samples) - n_components) smallest eigenvalues of the covariance matrix of X. References ---------- For n_components == 'mle', this class uses the method of `Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604` Implements the probabilistic PCA model from: M. Tipping and C. Bishop, Probabilistic Principal Component Analysis, Journal of the Royal Statistical Society, Series B, 61, Part 3, pp. 611-622 via the score and score_samples methods. See http://www.miketipping.com/papers/met-mppca.pdf For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`. For svd_solver == 'randomized', see: `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` Examples -------- >>> import numpy as np >>> from sklearn.decomposition import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(copy=True, iterated_power='auto', n_components=2, random_state=None, svd_solver='auto', tol=0.0, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] >>> print(pca.singular_values_) # doctest: +ELLIPSIS [ 6.30061... 0.54980...] >>> pca = PCA(n_components=2, svd_solver='full') >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE PCA(copy=True, iterated_power='auto', n_components=2, random_state=None, svd_solver='full', tol=0.0, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] >>> print(pca.singular_values_) # doctest: +ELLIPSIS [ 6.30061... 0.54980...] >>> pca = PCA(n_components=1, svd_solver='arpack') >>> pca.fit(X) PCA(copy=True, iterated_power='auto', n_components=1, random_state=None, svd_solver='arpack', tol=0.0, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244...] >>> print(pca.singular_values_) # doctest: +ELLIPSIS [ 6.30061...] See also -------- KernelPCA SparsePCA TruncatedSVD IncrementalPCA """ def __init__(self, n_components=None, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None): self.n_components = n_components self.copy = copy self.whiten = whiten self.svd_solver = svd_solver self.tol = tol self.iterated_power = iterated_power self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. y : Ignored. Returns ------- self : object Returns the instance itself. """ self._fit(X) return self def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : Ignored. Returns ------- X_new : array-like, shape (n_samples, n_components) """ U, S, V = self._fit(X) U = U[:, :self.n_components_] if self.whiten: # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples) U *= sqrt(X.shape[0] - 1) else: # X_new = X * V = U * S * V^T * V = U * S U *= S[:self.n_components_] return U def _fit(self, X): """Dispatch to the right submethod depending on the chosen solver.""" # Raise an error for sparse input. # This is more informative than the generic one raised by check_array. if issparse(X): raise TypeError('PCA does not support sparse input. See ' 'TruncatedSVD for a possible alternative.') X = check_array(X, dtype=[np.float64, np.float32], ensure_2d=True, copy=self.copy) # Handle n_components==None if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components # Handle svd_solver svd_solver = self.svd_solver if svd_solver == 'auto': # Small problem, just call full PCA if max(X.shape) <= 500: svd_solver = 'full' elif n_components >= 1 and n_components < .8 * min(X.shape): svd_solver = 'randomized' # This is also the case of n_components in (0,1) else: svd_solver = 'full' # Call different fits for either full or truncated SVD if svd_solver == 'full': return self._fit_full(X, n_components) elif svd_solver in ['arpack', 'randomized']: return self._fit_truncated(X, n_components, svd_solver) else: raise ValueError("Unrecognized svd_solver='{0}'" "".format(svd_solver)) def _fit_full(self, X, n_components): """Fit the model by computing full SVD on X""" n_samples, n_features = X.shape if n_components == 'mle': if n_samples < n_features: raise ValueError("n_components='mle' is only supported " "if n_samples >= n_features") elif not 0 <= n_components <= n_features: raise ValueError("n_components=%r must be between 0 and " "n_features=%r with svd_solver='full'" % (n_components, n_features)) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ U, S, V = linalg.svd(X, full_matrices=False) # flip eigenvectors' sign to enforce deterministic output U, V = svd_flip(U, V) components_ = V # Get variance explained by singular values explained_variance_ = (S ** 2) / (n_samples - 1) total_var = explained_variance_.sum() explained_variance_ratio_ = explained_variance_ / total_var singular_values_ = S.copy() # Store the singular values. # Postprocess the number of components required if n_components == 'mle': n_components = \ _infer_dimension_(explained_variance_, n_samples, n_features) elif 0 < n_components < 1.0: # number of components for which the cumulated explained # variance percentage is superior to the desired threshold ratio_cumsum = stable_cumsum(explained_variance_ratio_) n_components = np.searchsorted(ratio_cumsum, n_components) + 1 # Compute noise covariance using Probabilistic PCA model # The sigma2 maximum likelihood (cf. eq. 12.46) if n_components < min(n_features, n_samples): self.noise_variance_ = explained_variance_[n_components:].mean() else: self.noise_variance_ = 0. self.n_samples_, self.n_features_ = n_samples, n_features self.components_ = components_[:n_components] self.n_components_ = n_components self.explained_variance_ = explained_variance_[:n_components] self.explained_variance_ratio_ = \ explained_variance_ratio_[:n_components] self.singular_values_ = singular_values_[:n_components] return U, S, V def _fit_truncated(self, X, n_components, svd_solver): """Fit the model by computing truncated SVD (by ARPACK or randomized) on X """ n_samples, n_features = X.shape if isinstance(n_components, six.string_types): raise ValueError("n_components=%r cannot be a string " "with svd_solver='%s'" % (n_components, svd_solver)) elif not 1 <= n_components <= n_features: raise ValueError("n_components=%r must be between 1 and " "n_features=%r with svd_solver='%s'" % (n_components, n_features, svd_solver)) elif svd_solver == 'arpack' and n_components == n_features: raise ValueError("n_components=%r must be stricly less than " "n_features=%r with svd_solver='%s'" % (n_components, n_features, svd_solver)) random_state = check_random_state(self.random_state) # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if svd_solver == 'arpack': # random init solution, as ARPACK does it internally v0 = random_state.uniform(-1, 1, size=min(X.shape)) U, S, V = svds(X, k=n_components, tol=self.tol, v0=v0) # svds doesn't abide by scipy.linalg.svd/randomized_svd # conventions, so reverse its outputs. S = S[::-1] # flip eigenvectors' sign to enforce deterministic output U, V = svd_flip(U[:, ::-1], V[::-1]) elif svd_solver == 'randomized': # sign flipping is done inside U, S, V = randomized_svd(X, n_components=n_components, n_iter=self.iterated_power, flip_sign=True, random_state=random_state) self.n_samples_, self.n_features_ = n_samples, n_features self.components_ = V self.n_components_ = n_components # Get variance explained by singular values self.explained_variance_ = (S ** 2) / (n_samples - 1) total_var = np.var(X, ddof=1, axis=0) self.explained_variance_ratio_ = \ self.explained_variance_ / total_var.sum() self.singular_values_ = S.copy() # Store the singular values. if self.n_components_ < min(n_features, n_samples): self.noise_variance_ = (total_var.sum() - self.explained_variance_.sum()) self.noise_variance_ /= min(n_features, n_samples) - n_components else: self.noise_variance_ = 0. return U, S, V def score_samples(self, X): """Return the log-likelihood of each sample. See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X : array, shape(n_samples, n_features) The data. Returns ------- ll : array, shape (n_samples,) Log-likelihood of each sample under the current model """ check_is_fitted(self, 'mean_') X = check_array(X) Xr = X - self.mean_ n_features = X.shape[1] log_like = np.zeros(X.shape[0]) precision = self.get_precision() log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like def score(self, X, y=None): """Return the average log-likelihood of all samples. See. "Pattern Recognition and Machine Learning" by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf Parameters ---------- X : array, shape(n_samples, n_features) The data. y : Ignored. Returns ------- ll : float Average log-likelihood of the samples under the current model """ return np.mean(self.score_samples(X)) @deprecated("RandomizedPCA was deprecated in 0.18 and will be removed in " "0.20. " "Use PCA(svd_solver='randomized') instead. The new implementation " "DOES NOT store whiten ``components_``. Apply transform to get " "them.") class RandomizedPCA(BaseEstimator, TransformerMixin): """Principal component analysis (PCA) using randomized SVD .. deprecated:: 0.18 This class will be removed in 0.20. Use :class:`PCA` with parameter svd_solver 'randomized' instead. The new implementation DOES NOT store whiten ``components_``. Apply transform to get them. Linear dimensionality reduction using approximated Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space. Read more in the :ref:`User Guide `. Parameters ---------- n_components : int, optional Maximum number of components to keep. When not given or None, this is set to n_features (the second dimension of the training data). copy : bool If False, data passed to fit are overwritten and running fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead. iterated_power : int, default=2 Number of iterations for the power method. .. versionchanged:: 0.18 whiten : bool, optional When True (False by default) the `components_` vectors are multiplied by the square root of (n_samples) and divided by the singular values to ensure uncorrelated outputs with unit component-wise variances. Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making their data respect some hard-wired assumptions. random_state : int, RandomState instance or None, optional, default=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- components_ : array, shape (n_components, n_features) Components with maximum variance. explained_variance_ratio_ : array, shape (n_components,) Percentage of variance explained by each of the selected components. If k is not set then all components are stored and the sum of explained variances is equal to 1.0. singular_values_ : array, shape (n_components,) The singular values corresponding to each of the selected components. The singular values are equal to the 2-norms of the ``n_components`` variables in the lower-dimensional space. mean_ : array, shape (n_features,) Per-feature empirical mean, estimated from the training set. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import RandomizedPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = RandomizedPCA(n_components=2) >>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE RandomizedPCA(copy=True, iterated_power=2, n_components=2, random_state=None, whiten=False) >>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.99244... 0.00755...] >>> print(pca.singular_values_) # doctest: +ELLIPSIS [ 6.30061... 0.54980...] See also -------- PCA TruncatedSVD References ---------- .. [Halko2009] `Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909)` .. [MRT] `A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert` """ def __init__(self, n_components=None, copy=True, iterated_power=2, whiten=False, random_state=None): self.n_components = n_components self.copy = copy self.iterated_power = iterated_power self.whiten = whiten self.random_state = random_state def fit(self, X, y=None): """Fit the model with X by extracting the first principal components. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. y : Ignored. Returns ------- self : object Returns the instance itself. """ self._fit(check_array(X)) return self def _fit(self, X): """Fit the model to the data X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X : ndarray, shape (n_samples, n_features) The input data, copied, centered and whitened when requested. """ random_state = check_random_state(self.random_state) X = np.atleast_2d(as_float_array(X, copy=self.copy)) n_samples = X.shape[0] # Center data self.mean_ = np.mean(X, axis=0) X -= self.mean_ if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components U, S, V = randomized_svd(X, n_components, n_iter=self.iterated_power, random_state=random_state) self.explained_variance_ = exp_var = (S ** 2) / (n_samples - 1) full_var = np.var(X, ddof=1, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var self.singular_values_ = S # Store the singular values. if self.whiten: self.components_ = V / S[:, np.newaxis] * sqrt(n_samples) else: self.components_ = V return X def transform(self, X): """Apply dimensionality reduction on X. X is projected on the first principal components previous extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'mean_') X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X = np.dot(X, self.components_.T) return X def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. y : Ignored. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) X = self._fit(X) return np.dot(X, self.components_.T) def inverse_transform(self, X): """Transform data back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform does not compute the exact inverse operation of transform. """ check_is_fitted(self, 'mean_') X_original = np.dot(X, self.components_) if self.mean_ is not None: X_original = X_original + self.mean_ return X_original