""" Pure SciPy implementation of Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG), see https://bitbucket.org/joseroman/blopex License: BSD Authors: Robert Cimrman, Andrew Knyazev Examples in tests directory contributed by Nils Wagner. """ from __future__ import division, print_function, absolute_import import sys import numpy as np from numpy.testing import assert_allclose from scipy._lib.six import xrange from scipy.linalg import inv, eigh, cho_factor, cho_solve, cholesky from scipy.sparse.linalg import aslinearoperator, LinearOperator __all__ = ['lobpcg'] def pause(): # Used only when verbosity level > 10. input() def save(ar, fileName): # Used only when verbosity level > 10. from numpy import savetxt savetxt(fileName, ar, precision=8) def _assert_symmetric(M, rtol=1e-5, atol=1e-8): assert_allclose(M.T.conj(), M, rtol=rtol, atol=atol) ## # 21.05.2007, c def as2d(ar): """ If the input array is 2D return it, if it is 1D, append a dimension, making it a column vector. """ if ar.ndim == 2: return ar else: # Assume 1! aux = np.array(ar, copy=False) aux.shape = (ar.shape[0], 1) return aux def _makeOperator(operatorInput, expectedShape): """Takes a dense numpy array or a sparse matrix or a function and makes an operator performing matrix * blockvector products. Examples -------- >>> A = _makeOperator( arrayA, (n, n) ) >>> vectorB = A( vectorX ) """ if operatorInput is None: def ident(x): return x operator = LinearOperator(expectedShape, ident, matmat=ident) else: operator = aslinearoperator(operatorInput) if operator.shape != expectedShape: raise ValueError('operator has invalid shape') return operator def _applyConstraints(blockVectorV, factYBY, blockVectorBY, blockVectorY): """Changes blockVectorV in place.""" gramYBV = np.dot(blockVectorBY.T.conj(), blockVectorV) tmp = cho_solve(factYBY, gramYBV) blockVectorV -= np.dot(blockVectorY, tmp) def _b_orthonormalize(B, blockVectorV, blockVectorBV=None, retInvR=False): if blockVectorBV is None: if B is not None: blockVectorBV = B(blockVectorV) else: blockVectorBV = blockVectorV # Shared data!!! gramVBV = np.dot(blockVectorV.T.conj(), blockVectorBV) gramVBV = cholesky(gramVBV) gramVBV = inv(gramVBV, overwrite_a=True) # gramVBV is now R^{-1}. blockVectorV = np.dot(blockVectorV, gramVBV) if B is not None: blockVectorBV = np.dot(blockVectorBV, gramVBV) if retInvR: return blockVectorV, blockVectorBV, gramVBV else: return blockVectorV, blockVectorBV def lobpcg(A, X, B=None, M=None, Y=None, tol=None, maxiter=20, largest=True, verbosityLevel=0, retLambdaHistory=False, retResidualNormsHistory=False): """Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems. Parameters ---------- A : {sparse matrix, dense matrix, LinearOperator} The symmetric linear operator of the problem, usually a sparse matrix. Often called the "stiffness matrix". X : array_like Initial approximation to the k eigenvectors. If A has shape=(n,n) then X should have shape shape=(n,k). B : {dense matrix, sparse matrix, LinearOperator}, optional the right hand side operator in a generalized eigenproblem. by default, B = Identity often called the "mass matrix" M : {dense matrix, sparse matrix, LinearOperator}, optional preconditioner to A; by default M = Identity M should approximate the inverse of A Y : array_like, optional n-by-sizeY matrix of constraints, sizeY < n The iterations will be performed in the B-orthogonal complement of the column-space of Y. Y must be full rank. Returns ------- w : array Array of k eigenvalues v : array An array of k eigenvectors. V has the same shape as X. Other Parameters ---------------- tol : scalar, optional Solver tolerance (stopping criterion) by default: tol=n*sqrt(eps) maxiter : integer, optional maximum number of iterations by default: maxiter=min(n,20) largest : bool, optional when True, solve for the largest eigenvalues, otherwise the smallest verbosityLevel : integer, optional controls solver output. default: verbosityLevel = 0. retLambdaHistory : boolean, optional whether to return eigenvalue history retResidualNormsHistory : boolean, optional whether to return history of residual norms Examples -------- Solve A x = lambda B x with constraints and preconditioning. >>> from scipy.sparse import spdiags, issparse >>> from scipy.sparse.linalg import lobpcg, LinearOperator >>> n = 100 >>> vals = [np.arange(n, dtype=np.float64) + 1] >>> A = spdiags(vals, 0, n, n) >>> A.toarray() array([[ 1., 0., 0., ..., 0., 0., 0.], [ 0., 2., 0., ..., 0., 0., 0.], [ 0., 0., 3., ..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 98., 0., 0.], [ 0., 0., 0., ..., 0., 99., 0.], [ 0., 0., 0., ..., 0., 0., 100.]]) Constraints. >>> Y = np.eye(n, 3) Initial guess for eigenvectors, should have linearly independent columns. Column dimension = number of requested eigenvalues. >>> X = np.random.rand(n, 3) Preconditioner -- inverse of A (as an abstract linear operator). >>> invA = spdiags([1./vals[0]], 0, n, n) >>> def precond( x ): ... return invA * x >>> M = LinearOperator(matvec=precond, shape=(n, n), dtype=float) Here, ``invA`` could of course have been used directly as a preconditioner. Let us then solve the problem: >>> eigs, vecs = lobpcg(A, X, Y=Y, M=M, tol=1e-4, maxiter=40, largest=False) >>> eigs array([ 4., 5., 6.]) Note that the vectors passed in Y are the eigenvectors of the 3 smallest eigenvalues. The results returned are orthogonal to those. Notes ----- If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format (lambda, V, lambda history, residual norms history). In the following ``n`` denotes the matrix size and ``m`` the number of required eigenvalues (smallest or largest). The LOBPCG code internally solves eigenproblems of the size 3``m`` on every iteration by calling the "standard" dense eigensolver, so if ``m`` is not small enough compared to ``n``, it does not make sense to call the LOBPCG code, but rather one should use the "standard" eigensolver, e.g. numpy or scipy function in this case. If one calls the LOBPCG algorithm for 5``m``>``n``, it will most likely break internally, so the code tries to call the standard function instead. It is not that n should be large for the LOBPCG to work, but rather the ratio ``n``/``m`` should be large. It you call the LOBPCG code with ``m``=1 and ``n``=10, it should work, though ``n`` is small. The method is intended for extremely large ``n``/``m``, see e.g., reference [28] in http://arxiv.org/abs/0705.2626 The convergence speed depends basically on two factors: 1. How well relatively separated the seeking eigenvalues are from the rest of the eigenvalues. One can try to vary ``m`` to make this better. 2. How well conditioned the problem is. This can be changed by using proper preconditioning. For example, a rod vibration test problem (under tests directory) is ill-conditioned for large ``n``, so convergence will be slow, unless efficient preconditioning is used. For this specific problem, a good simple preconditioner function would be a linear solve for A, which is easy to code since A is tridiagonal. *Acknowledgements* lobpcg.py code was written by Robert Cimrman. Many thanks belong to Andrew Knyazev, the author of the algorithm, for lots of advice and support. References ---------- .. [1] A. V. Knyazev (2001), Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method. SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124 .. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007), Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc. http://arxiv.org/abs/0705.2626 .. [3] A. V. Knyazev's C and MATLAB implementations: https://bitbucket.org/joseroman/blopex """ blockVectorX = X blockVectorY = Y residualTolerance = tol maxIterations = maxiter if blockVectorY is not None: sizeY = blockVectorY.shape[1] else: sizeY = 0 # Block size. if len(blockVectorX.shape) != 2: raise ValueError('expected rank-2 array for argument X') n, sizeX = blockVectorX.shape if sizeX > n: raise ValueError('X column dimension exceeds the row dimension') A = _makeOperator(A, (n,n)) B = _makeOperator(B, (n,n)) M = _makeOperator(M, (n,n)) if (n - sizeY) < (5 * sizeX): # warn('The problem size is small compared to the block size.' \ # ' Using dense eigensolver instead of LOBPCG.') if blockVectorY is not None: raise NotImplementedError('The dense eigensolver ' 'does not support constraints.') # Define the closed range of indices of eigenvalues to return. if largest: eigvals = (n - sizeX, n-1) else: eigvals = (0, sizeX-1) A_dense = A(np.eye(n)) B_dense = None if B is None else B(np.eye(n)) return eigh(A_dense, B_dense, eigvals=eigvals, check_finite=False) if residualTolerance is None: residualTolerance = np.sqrt(1e-15) * n maxIterations = min(n, maxIterations) if verbosityLevel: aux = "Solving " if B is None: aux += "standard" else: aux += "generalized" aux += " eigenvalue problem with" if M is None: aux += "out" aux += " preconditioning\n\n" aux += "matrix size %d\n" % n aux += "block size %d\n\n" % sizeX if blockVectorY is None: aux += "No constraints\n\n" else: if sizeY > 1: aux += "%d constraints\n\n" % sizeY else: aux += "%d constraint\n\n" % sizeY print(aux) ## # Apply constraints to X. if blockVectorY is not None: if B is not None: blockVectorBY = B(blockVectorY) else: blockVectorBY = blockVectorY # gramYBY is a dense array. gramYBY = np.dot(blockVectorY.T.conj(), blockVectorBY) try: # gramYBY is a Cholesky factor from now on... gramYBY = cho_factor(gramYBY) except: raise ValueError('cannot handle linearly dependent constraints') _applyConstraints(blockVectorX, gramYBY, blockVectorBY, blockVectorY) ## # B-orthonormalize X. blockVectorX, blockVectorBX = _b_orthonormalize(B, blockVectorX) ## # Compute the initial Ritz vectors: solve the eigenproblem. blockVectorAX = A(blockVectorX) gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX) _lambda, eigBlockVector = eigh(gramXAX, check_finite=False) ii = np.argsort(_lambda)[:sizeX] if largest: ii = ii[::-1] _lambda = _lambda[ii] eigBlockVector = np.asarray(eigBlockVector[:,ii]) blockVectorX = np.dot(blockVectorX, eigBlockVector) blockVectorAX = np.dot(blockVectorAX, eigBlockVector) if B is not None: blockVectorBX = np.dot(blockVectorBX, eigBlockVector) ## # Active index set. activeMask = np.ones((sizeX,), dtype=bool) lambdaHistory = [_lambda] residualNormsHistory = [] previousBlockSize = sizeX ident = np.eye(sizeX, dtype=A.dtype) ident0 = np.eye(sizeX, dtype=A.dtype) ## # Main iteration loop. blockVectorP = None # set during iteration blockVectorAP = None blockVectorBP = None for iterationNumber in xrange(maxIterations): if verbosityLevel > 0: print('iteration %d' % iterationNumber) aux = blockVectorBX * _lambda[np.newaxis,:] blockVectorR = blockVectorAX - aux aux = np.sum(blockVectorR.conjugate() * blockVectorR, 0) residualNorms = np.sqrt(aux) residualNormsHistory.append(residualNorms) ii = np.where(residualNorms > residualTolerance, True, False) activeMask = activeMask & ii if verbosityLevel > 2: print(activeMask) currentBlockSize = activeMask.sum() if currentBlockSize != previousBlockSize: previousBlockSize = currentBlockSize ident = np.eye(currentBlockSize, dtype=A.dtype) if currentBlockSize == 0: break if verbosityLevel > 0: print('current block size:', currentBlockSize) print('eigenvalue:', _lambda) print('residual norms:', residualNorms) if verbosityLevel > 10: print(eigBlockVector) activeBlockVectorR = as2d(blockVectorR[:,activeMask]) if iterationNumber > 0: activeBlockVectorP = as2d(blockVectorP[:,activeMask]) activeBlockVectorAP = as2d(blockVectorAP[:,activeMask]) activeBlockVectorBP = as2d(blockVectorBP[:,activeMask]) if M is not None: # Apply preconditioner T to the active residuals. activeBlockVectorR = M(activeBlockVectorR) ## # Apply constraints to the preconditioned residuals. if blockVectorY is not None: _applyConstraints(activeBlockVectorR, gramYBY, blockVectorBY, blockVectorY) ## # B-orthonormalize the preconditioned residuals. aux = _b_orthonormalize(B, activeBlockVectorR) activeBlockVectorR, activeBlockVectorBR = aux activeBlockVectorAR = A(activeBlockVectorR) if iterationNumber > 0: aux = _b_orthonormalize(B, activeBlockVectorP, activeBlockVectorBP, retInvR=True) activeBlockVectorP, activeBlockVectorBP, invR = aux activeBlockVectorAP = np.dot(activeBlockVectorAP, invR) ## # Perform the Rayleigh Ritz Procedure: # Compute symmetric Gram matrices: xaw = np.dot(blockVectorX.T.conj(), activeBlockVectorAR) waw = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAR) xbw = np.dot(blockVectorX.T.conj(), activeBlockVectorBR) if iterationNumber > 0: xap = np.dot(blockVectorX.T.conj(), activeBlockVectorAP) wap = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAP) pap = np.dot(activeBlockVectorP.T.conj(), activeBlockVectorAP) xbp = np.dot(blockVectorX.T.conj(), activeBlockVectorBP) wbp = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBP) gramA = np.bmat([[np.diag(_lambda), xaw, xap], [xaw.T.conj(), waw, wap], [xap.T.conj(), wap.T.conj(), pap]]) gramB = np.bmat([[ident0, xbw, xbp], [xbw.T.conj(), ident, wbp], [xbp.T.conj(), wbp.T.conj(), ident]]) else: gramA = np.bmat([[np.diag(_lambda), xaw], [xaw.T.conj(), waw]]) gramB = np.bmat([[ident0, xbw], [xbw.T.conj(), ident]]) _assert_symmetric(gramA) _assert_symmetric(gramB) if verbosityLevel > 10: save(gramA, 'gramA') save(gramB, 'gramB') # Solve the generalized eigenvalue problem. _lambda, eigBlockVector = eigh(gramA, gramB, check_finite=False) ii = np.argsort(_lambda)[:sizeX] if largest: ii = ii[::-1] if verbosityLevel > 10: print(ii) _lambda = _lambda[ii] eigBlockVector = eigBlockVector[:,ii] lambdaHistory.append(_lambda) if verbosityLevel > 10: print('lambda:', _lambda) ## # Normalize eigenvectors! ## aux = np.sum( eigBlockVector.conjugate() * eigBlockVector, 0 ) ## eigVecNorms = np.sqrt( aux ) ## eigBlockVector = eigBlockVector / eigVecNorms[np.newaxis,:] # eigBlockVector, aux = _b_orthonormalize( B, eigBlockVector ) if verbosityLevel > 10: print(eigBlockVector) pause() ## # Compute Ritz vectors. if iterationNumber > 0: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize] eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) pp += np.dot(activeBlockVectorP, eigBlockVectorP) app = np.dot(activeBlockVectorAR, eigBlockVectorR) app += np.dot(activeBlockVectorAP, eigBlockVectorP) bpp = np.dot(activeBlockVectorBR, eigBlockVectorR) bpp += np.dot(activeBlockVectorBP, eigBlockVectorP) else: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) app = np.dot(activeBlockVectorAR, eigBlockVectorR) bpp = np.dot(activeBlockVectorBR, eigBlockVectorR) if verbosityLevel > 10: print(pp) print(app) print(bpp) pause() blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app blockVectorBX = np.dot(blockVectorBX, eigBlockVectorX) + bpp blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp aux = blockVectorBX * _lambda[np.newaxis,:] blockVectorR = blockVectorAX - aux aux = np.sum(blockVectorR.conjugate() * blockVectorR, 0) residualNorms = np.sqrt(aux) if verbosityLevel > 0: print('final eigenvalue:', _lambda) print('final residual norms:', residualNorms) if retLambdaHistory: if retResidualNormsHistory: return _lambda, blockVectorX, lambdaHistory, residualNormsHistory else: return _lambda, blockVectorX, lambdaHistory else: if retResidualNormsHistory: return _lambda, blockVectorX, residualNormsHistory else: return _lambda, blockVectorX