"""Dictionary Of Keys based matrix""" from __future__ import division, print_function, absolute_import __docformat__ = "restructuredtext en" __all__ = ['dok_matrix', 'isspmatrix_dok'] import functools import operator import itertools import numpy as np from scipy._lib.six import zip as izip, xrange, iteritems, iterkeys, itervalues from .base import spmatrix, isspmatrix from .sputils import (isdense, getdtype, isshape, isintlike, isscalarlike, upcast, upcast_scalar, IndexMixin, get_index_dtype, check_shape) try: from operator import isSequenceType as _is_sequence except ImportError: def _is_sequence(x): return (hasattr(x, '__len__') or hasattr(x, '__next__') or hasattr(x, 'next')) class dok_matrix(spmatrix, IndexMixin, dict): """ Dictionary Of Keys based sparse matrix. This is an efficient structure for constructing sparse matrices incrementally. This can be instantiated in several ways: dok_matrix(D) with a dense matrix, D dok_matrix(S) with a sparse matrix, S dok_matrix((M,N), [dtype]) create the matrix with initial shape (M,N) dtype is optional, defaulting to dtype='d' Attributes ---------- dtype : dtype Data type of the matrix shape : 2-tuple Shape of the matrix ndim : int Number of dimensions (this is always 2) nnz Number of nonzero elements Notes ----- Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed. Examples -------- >>> import numpy as np >>> from scipy.sparse import dok_matrix >>> S = dok_matrix((5, 5), dtype=np.float32) >>> for i in range(5): ... for j in range(5): ... S[i, j] = i + j # Update element """ format = 'dok' def __init__(self, arg1, shape=None, dtype=None, copy=False): dict.__init__(self) spmatrix.__init__(self) self.dtype = getdtype(dtype, default=float) if isinstance(arg1, tuple) and isshape(arg1): # (M,N) M, N = arg1 self._shape = check_shape((M, N)) elif isspmatrix(arg1): # Sparse ctor if isspmatrix_dok(arg1) and copy: arg1 = arg1.copy() else: arg1 = arg1.todok() if dtype is not None: arg1 = arg1.astype(dtype) dict.update(self, arg1) self._shape = check_shape(arg1.shape) self.dtype = arg1.dtype else: # Dense ctor try: arg1 = np.asarray(arg1) except: raise TypeError('Invalid input format.') if len(arg1.shape) != 2: raise TypeError('Expected rank <=2 dense array or matrix.') from .coo import coo_matrix d = coo_matrix(arg1, dtype=dtype).todok() dict.update(self, d) self._shape = check_shape(arg1.shape) self.dtype = d.dtype def update(self, val): # Prevent direct usage of update raise NotImplementedError("Direct modification to dok_matrix element " "is not allowed.") def _update(self, data): """An update method for dict data defined for direct access to `dok_matrix` data. Main purpose is to be used for effcient conversion from other spmatrix classes. Has no checking if `data` is valid.""" return dict.update(self, data) def set_shape(self, shape): new_matrix = self.reshape(shape, copy=False).asformat(self.format) self.__dict__ = new_matrix.__dict__ dict.clear(self) dict.update(self, new_matrix) shape = property(fget=spmatrix.get_shape, fset=set_shape) def getnnz(self, axis=None): if axis is not None: raise NotImplementedError("getnnz over an axis is not implemented " "for DOK format.") return dict.__len__(self) def count_nonzero(self): return sum(x != 0 for x in itervalues(self)) getnnz.__doc__ = spmatrix.getnnz.__doc__ count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__ def __len__(self): return dict.__len__(self) def get(self, key, default=0.): """This overrides the dict.get method, providing type checking but otherwise equivalent functionality. """ try: i, j = key assert isintlike(i) and isintlike(j) except (AssertionError, TypeError, ValueError): raise IndexError('Index must be a pair of integers.') if (i < 0 or i >= self.shape[0] or j < 0 or j >= self.shape[1]): raise IndexError('Index out of bounds.') return dict.get(self, key, default) def __getitem__(self, index): """If key=(i, j) is a pair of integers, return the corresponding element. If either i or j is a slice or sequence, return a new sparse matrix with just these elements. """ zero = self.dtype.type(0) i, j = self._unpack_index(index) i_intlike = isintlike(i) j_intlike = isintlike(j) if i_intlike and j_intlike: i = int(i) j = int(j) if i < 0: i += self.shape[0] if i < 0 or i >= self.shape[0]: raise IndexError('Index out of bounds.') if j < 0: j += self.shape[1] if j < 0 or j >= self.shape[1]: raise IndexError('Index out of bounds.') return dict.get(self, (i,j), zero) elif ((i_intlike or isinstance(i, slice)) and (j_intlike or isinstance(j, slice))): # Fast path for slicing very sparse matrices i_slice = slice(i, i+1) if i_intlike else i j_slice = slice(j, j+1) if j_intlike else j i_indices = i_slice.indices(self.shape[0]) j_indices = j_slice.indices(self.shape[1]) i_seq = xrange(*i_indices) j_seq = xrange(*j_indices) newshape = (len(i_seq), len(j_seq)) newsize = _prod(newshape) if len(self) < 2*newsize and newsize != 0: # Switch to the fast path only when advantageous # (count the iterations in the loops, adjust for complexity) # # We also don't handle newsize == 0 here (if # i/j_intlike, it can mean index i or j was out of # bounds) return self._getitem_ranges(i_indices, j_indices, newshape) i, j = self._index_to_arrays(i, j) if i.size == 0: return dok_matrix(i.shape, dtype=self.dtype) min_i = i.min() if min_i < -self.shape[0] or i.max() >= self.shape[0]: raise IndexError('Index (%d) out of range -%d to %d.' % (i.min(), self.shape[0], self.shape[0]-1)) if min_i < 0: i = i.copy() i[i < 0] += self.shape[0] min_j = j.min() if min_j < -self.shape[1] or j.max() >= self.shape[1]: raise IndexError('Index (%d) out of range -%d to %d.' % (j.min(), self.shape[1], self.shape[1]-1)) if min_j < 0: j = j.copy() j[j < 0] += self.shape[1] newdok = dok_matrix(i.shape, dtype=self.dtype) for key in itertools.product(xrange(i.shape[0]), xrange(i.shape[1])): v = dict.get(self, (i[key], j[key]), zero) if v: dict.__setitem__(newdok, key, v) return newdok def _getitem_ranges(self, i_indices, j_indices, shape): # performance golf: we don't want Numpy scalars here, they are slow i_start, i_stop, i_stride = map(int, i_indices) j_start, j_stop, j_stride = map(int, j_indices) newdok = dok_matrix(shape, dtype=self.dtype) for (ii, jj) in iterkeys(self): # ditto for numpy scalars ii = int(ii) jj = int(jj) a, ra = divmod(ii - i_start, i_stride) if a < 0 or a >= shape[0] or ra != 0: continue b, rb = divmod(jj - j_start, j_stride) if b < 0 or b >= shape[1] or rb != 0: continue dict.__setitem__(newdok, (a, b), dict.__getitem__(self, (ii, jj))) return newdok def __setitem__(self, index, x): if isinstance(index, tuple) and len(index) == 2: # Integer index fast path i, j = index if (isintlike(i) and isintlike(j) and 0 <= i < self.shape[0] and 0 <= j < self.shape[1]): v = np.asarray(x, dtype=self.dtype) if v.ndim == 0 and v != 0: dict.__setitem__(self, (int(i), int(j)), v[()]) return i, j = self._unpack_index(index) i, j = self._index_to_arrays(i, j) if isspmatrix(x): x = x.toarray() # Make x and i into the same shape x = np.asarray(x, dtype=self.dtype) x, _ = np.broadcast_arrays(x, i) if x.shape != i.shape: raise ValueError("Shape mismatch in assignment.") if np.size(x) == 0: return min_i = i.min() if min_i < -self.shape[0] or i.max() >= self.shape[0]: raise IndexError('Index (%d) out of range -%d to %d.' % (i.min(), self.shape[0], self.shape[0]-1)) if min_i < 0: i = i.copy() i[i < 0] += self.shape[0] min_j = j.min() if min_j < -self.shape[1] or j.max() >= self.shape[1]: raise IndexError('Index (%d) out of range -%d to %d.' % (j.min(), self.shape[1], self.shape[1]-1)) if min_j < 0: j = j.copy() j[j < 0] += self.shape[1] dict.update(self, izip(izip(i.flat, j.flat), x.flat)) if 0 in x: zeroes = x == 0 for key in izip(i[zeroes].flat, j[zeroes].flat): if dict.__getitem__(self, key) == 0: # may have been superseded by later update del self[key] def __add__(self, other): if isscalarlike(other): res_dtype = upcast_scalar(self.dtype, other) new = dok_matrix(self.shape, dtype=res_dtype) # Add this scalar to every element. M, N = self.shape for key in itertools.product(xrange(M), xrange(N)): aij = dict.get(self, (key), 0) + other if aij: new[key] = aij # new.dtype.char = self.dtype.char elif isspmatrix_dok(other): if other.shape != self.shape: raise ValueError("Matrix dimensions are not equal.") # We could alternatively set the dimensions to the largest of # the two matrices to be summed. Would this be a good idea? res_dtype = upcast(self.dtype, other.dtype) new = dok_matrix(self.shape, dtype=res_dtype) dict.update(new, self) with np.errstate(over='ignore'): dict.update(new, ((k, new[k] + other[k]) for k in iterkeys(other))) elif isspmatrix(other): csc = self.tocsc() new = csc + other elif isdense(other): new = self.todense() + other else: return NotImplemented return new def __radd__(self, other): if isscalarlike(other): new = dok_matrix(self.shape, dtype=self.dtype) M, N = self.shape for key in itertools.product(xrange(M), xrange(N)): aij = dict.get(self, (key), 0) + other if aij: new[key] = aij elif isspmatrix_dok(other): if other.shape != self.shape: raise ValueError("Matrix dimensions are not equal.") new = dok_matrix(self.shape, dtype=self.dtype) dict.update(new, self) dict.update(new, ((k, self[k] + other[k]) for k in iterkeys(other))) elif isspmatrix(other): csc = self.tocsc() new = csc + other elif isdense(other): new = other + self.todense() else: return NotImplemented return new def __neg__(self): if self.dtype.kind == 'b': raise NotImplementedError('Negating a sparse boolean matrix is not' ' supported.') new = dok_matrix(self.shape, dtype=self.dtype) dict.update(new, ((k, -self[k]) for k in iterkeys(self))) return new def _mul_scalar(self, other): res_dtype = upcast_scalar(self.dtype, other) # Multiply this scalar by every element. new = dok_matrix(self.shape, dtype=res_dtype) dict.update(new, ((k, v * other) for k, v in iteritems(self))) return new def _mul_vector(self, other): # matrix * vector result = np.zeros(self.shape[0], dtype=upcast(self.dtype, other.dtype)) for (i, j), v in iteritems(self): result[i] += v * other[j] return result def _mul_multivector(self, other): # matrix * multivector result_shape = (self.shape[0], other.shape[1]) result_dtype = upcast(self.dtype, other.dtype) result = np.zeros(result_shape, dtype=result_dtype) for (i, j), v in iteritems(self): result[i,:] += v * other[j,:] return result def __imul__(self, other): if isscalarlike(other): dict.update(self, ((k, v * other) for k, v in iteritems(self))) return self return NotImplemented def __truediv__(self, other): if isscalarlike(other): res_dtype = upcast_scalar(self.dtype, other) new = dok_matrix(self.shape, dtype=res_dtype) dict.update(new, ((k, v / other) for k, v in iteritems(self))) return new return self.tocsr() / other def __itruediv__(self, other): if isscalarlike(other): dict.update(self, ((k, v / other) for k, v in iteritems(self))) return self return NotImplemented def __reduce__(self): # this approach is necessary because __setstate__ is called after # __setitem__ upon unpickling and since __init__ is not called there # is no shape attribute hence it is not possible to unpickle it. return dict.__reduce__(self) # What should len(sparse) return? For consistency with dense matrices, # perhaps it should be the number of rows? For now it returns the number # of non-zeros. def transpose(self, axes=None, copy=False): if axes is not None: raise ValueError("Sparse matrices do not support " "an 'axes' parameter because swapping " "dimensions is the only logical permutation.") M, N = self.shape new = dok_matrix((N, M), dtype=self.dtype, copy=copy) dict.update(new, (((right, left), val) for (left, right), val in iteritems(self))) return new transpose.__doc__ = spmatrix.transpose.__doc__ def conjtransp(self): """Return the conjugate transpose.""" M, N = self.shape new = dok_matrix((N, M), dtype=self.dtype) dict.update(new, (((right, left), np.conj(val)) for (left, right), val in iteritems(self))) return new def copy(self): new = dok_matrix(self.shape, dtype=self.dtype) dict.update(new, self) return new copy.__doc__ = spmatrix.copy.__doc__ def getrow(self, i): """Returns the i-th row as a (1 x n) DOK matrix.""" new = dok_matrix((1, self.shape[1]), dtype=self.dtype) dict.update(new, (((0, j), self[i, j]) for j in xrange(self.shape[1]))) return new def getcol(self, j): """Returns the j-th column as a (m x 1) DOK matrix.""" new = dok_matrix((self.shape[0], 1), dtype=self.dtype) dict.update(new, (((i, 0), self[i, j]) for i in xrange(self.shape[0]))) return new def tocoo(self, copy=False): from .coo import coo_matrix if self.nnz == 0: return coo_matrix(self.shape, dtype=self.dtype) idx_dtype = get_index_dtype(maxval=max(self.shape)) data = np.fromiter(itervalues(self), dtype=self.dtype, count=self.nnz) row = np.fromiter((i for i, _ in iterkeys(self)), dtype=idx_dtype, count=self.nnz) col = np.fromiter((j for _, j in iterkeys(self)), dtype=idx_dtype, count=self.nnz) A = coo_matrix((data, (row, col)), shape=self.shape, dtype=self.dtype) A.has_canonical_format = True return A tocoo.__doc__ = spmatrix.tocoo.__doc__ def todok(self, copy=False): if copy: return self.copy() return self todok.__doc__ = spmatrix.todok.__doc__ def tocsc(self, copy=False): return self.tocoo(copy=False).tocsc(copy=copy) tocsc.__doc__ = spmatrix.tocsc.__doc__ def resize(self, *shape): shape = check_shape(shape) newM, newN = shape M, N = self.shape if newM < M or newN < N: # Remove all elements outside new dimensions for (i, j) in list(iterkeys(self)): if i >= newM or j >= newN: del self[i, j] self._shape = shape resize.__doc__ = spmatrix.resize.__doc__ def isspmatrix_dok(x): """Is x of dok_matrix type? Parameters ---------- x object to check for being a dok matrix Returns ------- bool True if x is a dok matrix, False otherwise Examples -------- >>> from scipy.sparse import dok_matrix, isspmatrix_dok >>> isspmatrix_dok(dok_matrix([[5]])) True >>> from scipy.sparse import dok_matrix, csr_matrix, isspmatrix_dok >>> isspmatrix_dok(csr_matrix([[5]])) False """ return isinstance(x, dok_matrix) def _prod(x): """Product of a list of numbers; ~40x faster vs np.prod for Python tuples""" if len(x) == 0: return 1 return functools.reduce(operator.mul, x)