""" Unit test for Linear Programming """ from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import assert_, assert_allclose, assert_equal from pytest import raises as assert_raises from scipy.optimize import linprog, OptimizeWarning from scipy._lib._numpy_compat import _assert_warns, suppress_warnings from scipy.sparse.linalg import MatrixRankWarning import pytest def magic_square(n): np.random.seed(0) M = n * (n**2 + 1) / 2 numbers = np.arange(n**4) // n**2 + 1 numbers = numbers.reshape(n**2, n, n) zeros = np.zeros((n**2, n, n)) A_list = [] b_list = [] # Rule 1: use every number exactly once for i in range(n**2): A_row = zeros.copy() A_row[i, :, :] = 1 A_list.append(A_row.flatten()) b_list.append(1) # Rule 2: Only one number per square for i in range(n): for j in range(n): A_row = zeros.copy() A_row[:, i, j] = 1 A_list.append(A_row.flatten()) b_list.append(1) # Rule 3: sum of rows is M for i in range(n): A_row = zeros.copy() A_row[:, i, :] = numbers[:, i, :] A_list.append(A_row.flatten()) b_list.append(M) # Rule 4: sum of columns is M for i in range(n): A_row = zeros.copy() A_row[:, :, i] = numbers[:, :, i] A_list.append(A_row.flatten()) b_list.append(M) # Rule 5: sum of diagonals is M A_row = zeros.copy() A_row[:, range(n), range(n)] = numbers[:, range(n), range(n)] A_list.append(A_row.flatten()) b_list.append(M) A_row = zeros.copy() A_row[:, range(n), range(-1, -n - 1, -1)] = \ numbers[:, range(n), range(-1, -n - 1, -1)] A_list.append(A_row.flatten()) b_list.append(M) A = np.array(np.vstack(A_list), dtype=float) b = np.array(b_list, dtype=float) c = np.random.rand(A.shape[1]) return A, b, c, numbers def lpgen_2d(m, n): """ -> A b c LP test: m*n vars, m+n constraints row sums == n/m, col sums == 1 https://gist.github.com/denis-bz/8647461 """ np.random.seed(0) c = - np.random.exponential(size=(m, n)) Arow = np.zeros((m, m * n)) brow = np.zeros(m) for j in range(m): j1 = j + 1 Arow[j, j * n:j1 * n] = 1 brow[j] = n / m Acol = np.zeros((n, m * n)) bcol = np.zeros(n) for j in range(n): j1 = j + 1 Acol[j, j::n] = 1 bcol[j] = 1 A = np.vstack((Arow, Acol)) b = np.hstack((brow, bcol)) return A, b, c.ravel() def _assert_infeasible(res): # res: linprog result object assert_(not res.success, "incorrectly reported success") assert_equal(res.status, 2, "failed to report infeasible status") def _assert_unbounded(res): # res: linprog result object assert_(not res.success, "incorrectly reported success") assert_equal(res.status, 3, "failed to report unbounded status") def _assert_success(res, desired_fun=None, desired_x=None, rtol=1e-8, atol=1e-8): # res: linprog result object # desired_fun: desired objective function value or None # desired_x: desired solution or None if not res.success: msg = "linprog status {0}, message: {1}".format(res.status, res.message) raise AssertionError(msg) assert_equal(res.status, 0) if desired_fun is not None: assert_allclose(res.fun, desired_fun, err_msg="converged to an unexpected objective value", rtol=rtol, atol=atol) if desired_x is not None: assert_allclose(res.x, desired_x, err_msg="converged to an unexpected solution", rtol=rtol, atol=atol) class LinprogCommonTests(object): def test_aliasing_b_ub(self): c = np.array([1.0]) A_ub = np.array([[1.0]]) b_ub_orig = np.array([3.0]) b_ub = b_ub_orig.copy() bounds = (-4.0, np.inf) res = linprog(c, A_ub=A_ub, b_ub=b_ub, bounds=bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=-4, desired_x=[-4]) assert_allclose(b_ub_orig, b_ub) def test_aliasing_b_eq(self): c = np.array([1.0]) A_eq = np.array([[1.0]]) b_eq_orig = np.array([3.0]) b_eq = b_eq_orig.copy() bounds = (-4.0, np.inf) res = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=3, desired_x=[3]) assert_allclose(b_eq_orig, b_eq) def test_bounds_second_form_unbounded_below(self): c = np.array([1.0]) A_eq = np.array([[1.0]]) b_eq = np.array([3.0]) bounds = (None, 10.0) res = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=3, desired_x=[3]) def test_bounds_second_form_unbounded_above(self): c = np.array([1.0]) A_eq = np.array([[1.0]]) b_eq = np.array([3.0]) bounds = (1.0, None) res = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=3, desired_x=[3]) def test_non_ndarray_args(self): c = [1.0] A_ub = [[1.0]] b_ub = [3.0] A_eq = [[1.0]] b_eq = [2.0] bounds = (-1.0, 10.0) res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=2, desired_x=[2]) def test_linprog_upper_bound_constraints(self): # Maximize a linear function subject to only linear upper bound # constraints. # http://www.dam.brown.edu/people/huiwang/classes/am121/Archive/simplex_121_c.pdf c = np.array([3, 2]) * -1 # maximize A_ub = [[2, 1], [1, 1], [1, 0]] b_ub = [10, 8, 4] res = (linprog(c, A_ub=A_ub, b_ub=b_ub, method=self.method, options=self.options)) _assert_success(res, desired_fun=-18, desired_x=[2, 6]) def test_linprog_mixed_constraints(self): # Minimize linear function subject to non-negative variables. # http://www.statslab.cam.ac.uk/~ff271/teaching/opt/notes/notes8.pdf c = [6, 3] A_ub = [[0, 3], [-1, -1], [-2, 1]] b_ub = [2, -1, -1] res = linprog(c, A_ub=A_ub, b_ub=b_ub, method=self.method, options=self.options) _assert_success(res, desired_fun=5, desired_x=[2 / 3, 1 / 3]) def test_linprog_cyclic_recovery(self): # Test linprogs recovery from cycling using the Klee-Minty problem # Klee-Minty http://www.math.ubc.ca/~israel/m340/kleemin3.pdf c = np.array([100, 10, 1]) * -1 # maximize A_ub = [[1, 0, 0], [20, 1, 0], [200, 20, 1]] b_ub = [1, 100, 10000] res = linprog(c, A_ub=A_ub, b_ub=b_ub, method=self.method, options=self.options) _assert_success(res, desired_x=[0, 0, 10000], atol=5e-6, rtol=1e-7) def test_linprog_cyclic_bland(self): # Test the effect of Bland's rule on a cycling problem c = np.array([-10, 57, 9, 24.]) A_ub = np.array([[0.5, -5.5, -2.5, 9], [0.5, -1.5, -0.5, 1], [1, 0, 0, 0]]) b_ub = [0, 0, 1] # "interior-point" will succeed, "simplex" will fail res = linprog(c, A_ub=A_ub, b_ub=b_ub, options=dict(maxiter=100), method=self.method) if self.method == "simplex": assert_(not res.success) res = linprog(c, A_ub=A_ub, b_ub=b_ub, options=dict(maxiter=100, bland=True,), method=self.method) _assert_success(res, desired_x=[1, 0, 1, 0]) def test_linprog_cyclic_bland_bug_8561(self): # Test that pivot row is chosen correctly when using Bland's rule c = np.array([7, 0, -4, 1.5, 1.5]) A_ub = np.array([ [4, 5.5, 1.5, 1.0, -3.5], [1, -2.5, -2, 2.5, 0.5], [3, -0.5, 4, -12.5, -7], [-1, 4.5, 2, -3.5, -2], [5.5, 2, -4.5, -1, 9.5]]) b_ub = np.array([0, 0, 0, 0, 1]) if self.method == "simplex": res = linprog(c, A_ub=A_ub, b_ub=b_ub, options=dict(maxiter=100, bland=True), method=self.method) else: res = linprog(c, A_ub=A_ub, b_ub=b_ub, options=dict(maxiter=100), method=self.method) _assert_success(res, desired_x=[0, 0, 19, 16/3, 29/3]) def test_linprog_unbounded(self): # Test linprog response to an unbounded problem c = np.array([1, 1]) * -1 # maximize A_ub = [[-1, 1], [-1, -1]] b_ub = [-1, -2] res = linprog(c, A_ub=A_ub, b_ub=b_ub, method=self.method, options=self.options) _assert_unbounded(res) def test_linprog_infeasible(self): # Test linrpog response to an infeasible problem c = [-1, -1] A_ub = [[1, 0], [0, 1], [-1, -1]] b_ub = [2, 2, -5] res = linprog(c, A_ub=A_ub, b_ub=b_ub, method=self.method, options=self.options) _assert_infeasible(res) def test_nontrivial_problem(self): # Test linprog for a problem involving all constraint types, # negative resource limits, and rounding issues. c = [-1, 8, 4, -6] A_ub = [[-7, -7, 6, 9], [1, -1, -3, 0], [10, -10, -7, 7], [6, -1, 3, 4]] b_ub = [-3, 6, -6, 6] A_eq = [[-10, 1, 1, -8]] b_eq = [-4] res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) _assert_success(res, desired_fun=7083 / 1391, desired_x=[101 / 1391, 1462 / 1391, 0, 752 / 1391]) def test_negative_variable(self): # Test linprog with a problem with one unbounded variable and # another with a negative lower bound. c = np.array([-1, 4]) * -1 # maximize A_ub = np.array([[-3, 1], [1, 2]], dtype=np.float64) A_ub_orig = A_ub.copy() b_ub = [6, 4] x0_bounds = (-np.inf, np.inf) x1_bounds = (-3, np.inf) res = linprog(c, A_ub=A_ub, b_ub=b_ub, bounds=(x0_bounds, x1_bounds), method=self.method, options=self.options) assert_equal(A_ub, A_ub_orig) # user input not overwritten _assert_success(res, desired_fun=-80 / 7, desired_x=[-8 / 7, 18 / 7]) def test_large_problem(self): # Test linprog simplex with a rather large problem (400 variables, # 40 constraints) generated by https://gist.github.com/denis-bz/8647461 A, b, c = lpgen_2d(20, 20) res = linprog(c, A_ub=A, b_ub=b, method=self.method, options=self.options) _assert_success(res, desired_fun=-64.049494229) def test_network_flow(self): # A network flow problem with supply and demand at nodes # and with costs along directed edges. # https://www.princeton.edu/~rvdb/542/lectures/lec10.pdf c = [2, 4, 9, 11, 4, 3, 8, 7, 0, 15, 16, 18] n, p = -1, 1 A_eq = [ [n, n, p, 0, p, 0, 0, 0, 0, p, 0, 0], [p, 0, 0, p, 0, p, 0, 0, 0, 0, 0, 0], [0, 0, n, n, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, p, p, 0, 0, p, 0], [0, 0, 0, 0, n, n, n, 0, p, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, n, n, 0, 0, p], [0, 0, 0, 0, 0, 0, 0, 0, 0, n, n, n]] b_eq = [0, 19, -16, 33, 0, 0, -36] res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) _assert_success(res, desired_fun=755, atol=1e-6, rtol=1e-7) def test_network_flow_limited_capacity(self): # A network flow problem with supply and demand at nodes # and with costs and capacities along directed edges. # http://blog.sommer-forst.de/2013/04/10/ cost = [2, 2, 1, 3, 1] bounds = [ [0, 4], [0, 2], [0, 2], [0, 3], [0, 5]] n, p = -1, 1 A_eq = [ [n, n, 0, 0, 0], [p, 0, n, n, 0], [0, p, p, 0, n], [0, 0, 0, p, p]] b_eq = [-4, 0, 0, 4] if self.method == "simplex": # Including the callback here ensures the solution can be # calculated correctly, even when phase 1 terminated # with some of the artificial variables as pivots # (i.e. basis[:m] contains elements corresponding to # the artificial variables) res = linprog(c=cost, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options, callback=lambda x, **kwargs: None) else: with suppress_warnings() as sup: sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...") sup.filter(OptimizeWarning, "A_eq does not appear...") sup.filter(OptimizeWarning, "Solving system with option...") res = linprog(c=cost, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=14) def test_simplex_algorithm_wikipedia_example(self): # http://en.wikipedia.org/wiki/Simplex_algorithm#Example Z = [-2, -3, -4] A_ub = [ [3, 2, 1], [2, 5, 3]] b_ub = [10, 15] res = linprog(c=Z, A_ub=A_ub, b_ub=b_ub, method=self.method, options=self.options) _assert_success(res, desired_fun=-20) def test_enzo_example(self): # http://projects.scipy.org/scipy/attachment/ticket/1252/lp2.py # # Translated from Octave code at: # http://www.ecs.shimane-u.ac.jp/~kyoshida/lpeng.htm # and placed under MIT licence by Enzo Michelangeli # with permission explicitly granted by the original author, # Prof. Kazunobu Yoshida c = [4, 8, 3, 0, 0, 0] A_eq = [ [2, 5, 3, -1, 0, 0], [3, 2.5, 8, 0, -1, 0], [8, 10, 4, 0, 0, -1]] b_eq = [185, 155, 600] res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) _assert_success(res, desired_fun=317.5, desired_x=[66.25, 0, 17.5, 0, 183.75, 0], atol=6e-6, rtol=1e-7) def test_enzo_example_b(self): # rescued from https://github.com/scipy/scipy/pull/218 c = [2.8, 6.3, 10.8, -2.8, -6.3, -10.8] A_eq = [[-1, -1, -1, 0, 0, 0], [0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 1, 0, 0, 1]] b_eq = [-0.5, 0.4, 0.3, 0.3, 0.3] if self.method == "simplex": # Including the callback here ensures the solution can be # calculated correctly. res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options, callback=lambda x, **kwargs: None) else: with suppress_warnings() as sup: sup.filter(OptimizeWarning, "A_eq does not appear...") res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) _assert_success(res, desired_fun=-1.77, desired_x=[0.3, 0.2, 0.0, 0.0, 0.1, 0.3]) def test_enzo_example_c_with_degeneracy(self): # rescued from https://github.com/scipy/scipy/pull/218 m = 20 c = -np.ones(m) tmp = 2 * np.pi * np.arange(1, m + 1) / (m + 1) A_eq = np.vstack((np.cos(tmp) - 1, np.sin(tmp))) b_eq = [0, 0] res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) _assert_success(res, desired_fun=0, desired_x=np.zeros(m)) def test_enzo_example_c_with_unboundedness(self): # rescued from https://github.com/scipy/scipy/pull/218 m = 50 c = -np.ones(m) tmp = 2 * np.pi * np.arange(m) / (m + 1) A_eq = np.vstack((np.cos(tmp) - 1, np.sin(tmp))) b_eq = [0, 0] res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) _assert_unbounded(res) def test_enzo_example_c_with_infeasibility(self): # rescued from https://github.com/scipy/scipy/pull/218 m = 50 c = -np.ones(m) tmp = 2 * np.pi * np.arange(m) / (m + 1) A_eq = np.vstack((np.cos(tmp) - 1, np.sin(tmp))) b_eq = [1, 1] if self.method == "simplex": res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) else: res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, method=self.method, options={"presolve": False}) _assert_infeasible(res) def test_unknown_options_or_solver(self): c = np.array([-3, -2]) A_ub = [[2, 1], [1, 1], [1, 0]] b_ub = [10, 8, 4] def f(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, options={}): linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=options) _assert_warns(OptimizeWarning, f, c, A_ub=A_ub, b_ub=b_ub, options=dict(spam='42')) assert_raises(ValueError, linprog, c, A_ub=A_ub, b_ub=b_ub, method='ekki-ekki-ekki') def test_no_constraints(self): res = linprog([-1, -2], method=self.method, options=self.options) if self.method == "simplex": # Why should x be 0,0? inf,inf is more correct, IMO assert_equal(res.x, [0, 0]) _assert_unbounded(res) def test_simple_bounds(self): res = linprog([1, 2], bounds=(1, 2), method=self.method, options=self.options) _assert_success(res, desired_x=[1, 1]) res = linprog([1, 2], bounds=[(1, 2), (1, 2)], method=self.method, options=self.options) _assert_success(res, desired_x=[1, 1]) def test_invalid_inputs(self): def f(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None): linprog(c, A_ub, b_ub, A_eq, b_eq, bounds, method=self.method, options=self.options) for bad_bound in [[(5, 0), (1, 2), (3, 4)], [(1, 2), (3, 4)], [(1, 2), (3, 4), (3, 4, 5)], [(1, 2), (np.inf, np.inf), (3, 4)], [(1, 2), (-np.inf, -np.inf), (3, 4)], ]: assert_raises(ValueError, f, [1, 2, 3], bounds=bad_bound) assert_raises(ValueError, f, [1, 2], A_ub=[[1, 2]], b_ub=[1, 2]) assert_raises(ValueError, f, [1, 2], A_ub=[[1]], b_ub=[1]) assert_raises(ValueError, f, [1, 2], A_eq=[[1, 2]], b_eq=[1, 2]) assert_raises(ValueError, f, [1, 2], A_eq=[[1]], b_eq=[1]) assert_raises(ValueError, f, [1, 2], A_eq=[1], b_eq=1) if ("_sparse_presolve" in self.options and self.options["_sparse_presolve"]): return # this test doesn't make sense for sparse presolve # there aren't 3D sparse matrices assert_raises(ValueError, f, [1, 2], A_ub=np.zeros((1, 1, 3)), b_eq=1) def test_basic_artificial_vars(self): # Test if linprog succeeds when at the end of Phase 1 some artificial # variables remain basic, and the row in T corresponding to the # artificial variables is not all zero. c = np.array([-0.1, -0.07, 0.004, 0.004, 0.004, 0.004]) A_ub = np.array([[1.0, 0, 0, 0, 0, 0], [-1.0, 0, 0, 0, 0, 0], [0, -1.0, 0, 0, 0, 0], [0, 1.0, 0, 0, 0, 0], [1.0, 1.0, 0, 0, 0, 0]]) b_ub = np.array([3.0, 3.0, 3.0, 3.0, 20.0]) A_eq = np.array([[1.0, 0, -1, 1, -1, 1], [0, -1.0, -1, 1, -1, 1]]) b_eq = np.array([0, 0]) res = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) _assert_success(res, desired_fun=0, desired_x=np.zeros_like(c), atol=2e-6) def test_empty_constraint_2(self): res = linprog([1, -1, 1, -1], bounds=[(0, np.inf), (-np.inf, 0), (-1, 1), (-1, 1)], method=self.method, options=self.options) _assert_success(res, desired_x=[0, 0, -1, 1], desired_fun=-2) def test_zero_row_2(self): A_eq = [[0, 0, 0], [1, 1, 1], [0, 0, 0]] b_eq = [0, 3, 0] c = [1, 2, 3] res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) _assert_success(res, desired_fun=3) def test_zero_row_4(self): A_ub = [[0, 0, 0], [1, 1, 1], [0, 0, 0]] b_ub = [0, 3, 0] c = [1, 2, 3] res = linprog(c=c, A_ub=A_ub, b_ub=b_ub, method=self.method, options=self.options) _assert_success(res, desired_fun=0) def test_zero_column_1(self): m, n = 3, 4 np.random.seed(0) c = np.random.rand(n) c[1] = 1 A_eq = np.random.rand(m, n) A_eq[:, 1] = 0 b_eq = np.random.rand(m) A_ub = [[1, 0, 1, 1]] b_ub = 3 res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds=[(-10, 10), (-10, 10), (-10, None), (None, None)], method=self.method, options=self.options) _assert_success(res, desired_fun=-9.7087836730413404) def test_singleton_row_eq_2(self): c = [1, 1, 1, 2] A_eq = [[1, 0, 0, 0], [0, 2, 0, 0], [1, 0, 0, 0], [1, 1, 1, 1]] b_eq = [1, 2, 1, 4] res = linprog(c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) _assert_success(res, desired_fun=4) def test_singleton_row_ub_2(self): c = [1, 1, 1, 2] A_ub = [[1, 0, 0, 0], [0, 2, 0, 0], [-1, 0, 0, 0], [1, 1, 1, 1]] b_ub = [1, 2, -0.5, 4] res = linprog(c, A_ub=A_ub, b_ub=b_ub, bounds=[(None, None), (0, None), (0, None), (0, None)], method=self.method, options=self.options) _assert_success(res, desired_fun=0.5) def test_remove_redundancy_infeasibility(self): m, n = 10, 10 c = np.random.rand(n) A0 = np.random.rand(m, n) b0 = np.random.rand(m) A0[-1, :] = 2 * A0[-2, :] b0[-1] *= -1 with suppress_warnings() as sup: sup.filter(OptimizeWarning, "A_eq does not appear...") res = linprog(c, A_eq=A0, b_eq=b0, method=self.method, options=self.options) _assert_infeasible(res) def test_bounded_below_only(self): A = np.eye(3) b = np.array([1, 2, 3]) c = np.ones(3) res = linprog(c, A_eq=A, b_eq=b, bounds=(0.5, np.inf), method=self.method, options=self.options) _assert_success(res, desired_x=b, desired_fun=np.sum(b)) def test_bounded_above_only(self): A = np.eye(3) b = np.array([1, 2, 3]) c = np.ones(3) res = linprog(c, A_eq=A, b_eq=b, bounds=(-np.inf, 4), method=self.method, options=self.options) _assert_success(res, desired_x=b, desired_fun=np.sum(b)) def test_unbounded_below_and_above(self): A = np.eye(3) b = np.array([1, 2, 3]) c = np.ones(3) res = linprog(c, A_eq=A, b_eq=b, bounds=(-np.inf, np.inf), method=self.method, options=self.options) _assert_success(res, desired_x=b, desired_fun=np.sum(b)) def test_bug_8663(self): A = [[0, -7]] b = [-6] c = [1, 5] bounds = [(0, None), (None, None)] res = linprog(c, A_eq=A, b_eq=b, bounds=bounds, method=self.method, options=self.options) _assert_success(res, desired_x=[0, 6./7], desired_fun=5*6./7) class TestLinprogSimplex(LinprogCommonTests): method = "simplex" options = {} def test_callback(self): # Check that callback is as advertised callback_complete = [False] last_xk = [] def cb(xk, **kwargs): kwargs.pop('tableau') assert_(isinstance(kwargs.pop('phase'), int)) assert_(isinstance(kwargs.pop('nit'), int)) i, j = kwargs.pop('pivot') assert_(np.isscalar(i)) assert_(np.isscalar(j)) basis = kwargs.pop('basis') assert_(isinstance(basis, np.ndarray)) assert_(basis.dtype == np.int_) complete = kwargs.pop('complete') assert_(isinstance(complete, bool)) if complete: last_xk.append(xk) callback_complete[0] = True else: assert_(not callback_complete[0]) # no more kwargs assert_(not kwargs) c = np.array([-3, -2]) A_ub = [[2, 1], [1, 1], [1, 0]] b_ub = [10, 8, 4] res = linprog(c, A_ub=A_ub, b_ub=b_ub, callback=cb, method=self.method) assert_(callback_complete[0]) assert_allclose(last_xk[0], res.x) class BaseTestLinprogIP(LinprogCommonTests): method = "interior-point" def test_bounds_equal_but_infeasible(self): c = [-4, 1] A_ub = [[7, -2], [0, 1], [2, -2]] b_ub = [14, 0, 3] bounds = [(2, 2), (0, None)] res = linprog(c=c, A_ub=A_ub, b_ub=b_ub, bounds=bounds, method=self.method) _assert_infeasible(res) def test_bounds_equal_but_infeasible2(self): c = [-4, 1] A_eq = [[7, -2], [0, 1], [2, -2]] b_eq = [14, 0, 3] bounds = [(2, 2), (0, None)] res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method) _assert_infeasible(res) def test_magic_square_bug_7044(self): # test linprog with a problem with a rank-deficient A_eq matrix A, b, c, N = magic_square(3) with suppress_warnings() as sup: sup.filter(OptimizeWarning, "A_eq does not appear...") res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1), method=self.method, options=self.options) _assert_success(res, desired_fun=1.730550597) def test_bug_6690(self): # https://github.com/scipy/scipy/issues/6690 A_eq = np.array([[0., 0., 0., 0.93, 0., 0.65, 0., 0., 0.83, 0.]]) b_eq = np.array([0.9626]) A_ub = np.array([[0., 0., 0., 1.18, 0., 0., 0., -0.2, 0., -0.22], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0.43, 0., 0., 0., 0., 0., 0.], [0., -1.22, -0.25, 0., 0., 0., -2.06, 0., 0., 1.37], [0., 0., 0., 0., 0., 0., 0., -0.25, 0., 0.]]) b_ub = np.array([0.615, 0., 0.172, -0.869, -0.022]) bounds = np.array( [[-0.84, -0.97, 0.34, 0.4, -0.33, -0.74, 0.47, 0.09, -1.45, -0.73], [0.37, 0.02, 2.86, 0.86, 1.18, 0.5, 1.76, 0.17, 0.32, -0.15]]).T c = np.array([-1.64, 0.7, 1.8, -1.06, -1.16, 0.26, 2.13, 1.53, 0.66, 0.28]) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...") sup.filter(OptimizeWarning, "Solving system with option...") sol = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method=self.method, options=self.options) _assert_success(sol, desired_fun=-1.191, rtol=1e-6) def test_bug_5400(self): # https://github.com/scipy/scipy/issues/5400 bounds = [ (0, None), (0, 100), (0, 100), (0, 100), (0, 100), (0, 100), (0, 100), (0, 900), (0, 900), (0, 900), (0, 900), (0, 900), (0, 900), (0, None), (0, None), (0, None), (0, None), (0, None), (0, None)] f = 1 / 9 g = -1e4 h = -3.1 A_ub = np.array([ [1, -2.99, 0, 0, -3, 0, 0, 0, -1, -1, 0, -1, -1, 1, 1, 0, 0, 0, 0], [1, 0, -2.9, h, 0, -3, 0, -1, 0, 0, -1, 0, -1, 0, 0, 1, 1, 0, 0], [1, 0, 0, h, 0, 0, -3, -1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 1, 1], [0, 1.99, -1, -1, 0, 0, 0, -1, f, f, 0, 0, 0, g, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, -1, -1, 0, 0, 0, -1, f, f, 0, g, 0, 0, 0, 0], [0, -1, 1.9, 2.1, 0, 0, 0, f, -1, -1, 0, 0, 0, 0, 0, g, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0, 0, f, -1, f, 0, 0, 0, g, 0, 0], [0, -1, -1, 2.1, 0, 0, 0, f, f, -1, 0, 0, 0, 0, 0, 0, 0, g, 0], [0, 0, 0, 0, -1, -1, 2, 0, 0, 0, f, f, -1, 0, 0, 0, 0, 0, g]]) b_ub = np.array([0.0, 0, 0, 0, 0, 0, 0, 0, 0]) c = np.array([-1.0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]) res = linprog(c, A_ub, b_ub, bounds=bounds, method=self.method, options=self.options) _assert_success(res, desired_fun=-106.63507541835018) def test_empty_constraint_1(self): # detected in presolve? res = linprog([-1, 1, -1, 1], bounds=[(0, np.inf), (-np.inf, 0), (-1, 1), (-1, 1)], method=self.method, options=self.options) _assert_unbounded(res) assert_equal(res.nit, 0) def test_singleton_row_eq_1(self): # detected in presolve? c = [1, 1, 1, 2] A_eq = [[1, 0, 0, 0], [0, 2, 0, 0], [1, 0, 0, 0], [1, 1, 1, 1]] b_eq = [1, 2, 2, 4] res = linprog(c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) _assert_infeasible(res) assert_equal(res.nit, 0) def test_singleton_row_ub_1(self): # detected in presolve? c = [1, 1, 1, 2] A_ub = [[1, 0, 0, 0], [0, 2, 0, 0], [-1, 0, 0, 0], [1, 1, 1, 1]] b_ub = [1, 2, -2, 4] res = linprog(c, A_ub=A_ub, b_ub=b_ub, bounds=[(None, None), (0, None), (0, None), (0, None)], method=self.method, options=self.options) _assert_infeasible(res) assert_equal(res.nit, 0) def test_zero_column_2(self): # detected in presolve? np.random.seed(0) m, n = 2, 4 c = np.random.rand(n) c[1] = -1 A_eq = np.random.rand(m, n) A_eq[:, 1] = 0 b_eq = np.random.rand(m) A_ub = np.random.rand(m, n) A_ub[:, 1] = 0 b_ub = np.random.rand(m) res = linprog(c, A_ub, b_ub, A_eq, b_eq, bounds=(None, None), method=self.method, options=self.options) _assert_unbounded(res) assert_equal(res.nit, 0) def test_zero_row_1(self): # detected in presolve? m, n = 2, 4 c = np.random.rand(n) A_eq = np.random.rand(m, n) A_eq[0, :] = 0 b_eq = np.random.rand(m) res = linprog(c=c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) _assert_infeasible(res) assert_equal(res.nit, 0) def test_zero_row_3(self): # detected in presolve? m, n = 2, 4 c = np.random.rand(n) A_ub = np.random.rand(m, n) A_ub[0, :] = 0 b_ub = -np.random.rand(m) res = linprog(c=c, A_ub=A_ub, b_ub=b_ub, method=self.method, options=self.options) _assert_infeasible(res) assert_equal(res.nit, 0) def test_infeasible_ub(self): # detected in presolve? c = [1] A_ub = [[2]] b_ub = 4 bounds = (5, 6) res = linprog(c=c, A_ub=A_ub, b_ub=b_ub, bounds=bounds, method=self.method, options=self.options) _assert_infeasible(res) assert_equal(res.nit, 0) def test_type_error(self): c = [1] A_eq = [[1]] b_eq = "hello" assert_raises(TypeError, linprog, c, A_eq=A_eq, b_eq=b_eq, method=self.method, options=self.options) def test_equal_bounds_no_presolve(self): # There was a bug when a lower and upper bound were equal but # presolve was not on to eliminate the variable. The bound # was being converted to an equality constraint, but the bound # was not eliminated, leading to issues in postprocessing. c = [1, 2] A_ub = [[1, 2], [1.1, 2.2]] b_ub = [4, 8] bounds = [(1, 2), (2, 2)] o = {key: self.options[key] for key in self.options} o["presolve"] = False res = linprog(c=c, A_ub=A_ub, b_ub=b_ub, bounds=bounds, method=self.method, options=o) _assert_infeasible(res) def test_unbounded_below_no_presolve_corrected(self): c = [1] bounds = [(None, 1)] o = {key: self.options[key] for key in self.options} o["presolve"] = False res = linprog(c=c, bounds=bounds, method=self.method, options=o) _assert_unbounded(res) def test_bug_8664(self): # Weak test. Ideally should _detect infeasibility_ for all options. c = [4] A_ub = [[2], [5]] b_ub = [4, 4] A_eq = [[0], [-8], [9]] b_eq = [3, 2, 10] with suppress_warnings() as sup: sup.filter(RuntimeWarning) sup.filter(OptimizeWarning, "Solving system with option...") o = {key: self.options[key] for key in self.options} o["presolve"] = False res = linprog(c, A_ub, b_ub, A_eq, b_eq, options=o, method=self.method) assert_(not res.success, "incorrectly reported success") class TestLinprogIPSpecific: method = "interior-point" # the following tests don't need to be performed separately for # sparse presolve, sparse after presolve, and dense def test_unbounded_below_no_presolve_original(self): # formerly caused segfault in TravisCI w/ "cholesky":True c = [-1] bounds = [(None, 1)] res = linprog(c=c, bounds=bounds, method=self.method, options={"presolve": False, "cholesky": True}) _assert_success(res, desired_fun=-1) def test_cholesky(self): # Test with a rather large problem (400 variables, # 40 constraints) generated by https://gist.github.com/denis-bz/8647461 # use cholesky factorization and triangular solves A, b, c = lpgen_2d(20, 20) res = linprog(c, A_ub=A, b_ub=b, method=self.method, options={"cholesky": True}) # only for dense _assert_success(res, desired_fun=-64.049494229) def test_alternate_initial_point(self): # Test with a rather large problem (400 variables, # 40 constraints) generated by https://gist.github.com/denis-bz/8647461 # use "improved" initial point A, b, c = lpgen_2d(20, 20) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...") sup.filter(OptimizeWarning, "Solving system with option...") res = linprog(c, A_ub=A, b_ub=b, method=self.method, options={"ip": True, "disp": True}) # ip code is independent of sparse/dense _assert_success(res, desired_fun=-64.049494229) def test_maxiter(self): # Test with a rather large problem (400 variables, # 40 constraints) generated by https://gist.github.com/denis-bz/8647461 # test iteration limit A, b, c = lpgen_2d(20, 20) maxiter = np.random.randint(6) + 1 # problem takes 7 iterations res = linprog(c, A_ub=A, b_ub=b, method=self.method, options={"maxiter": maxiter}) # maxiter is independent of sparse/dense assert_equal(res.status, 1) assert_equal(res.nit, maxiter) def test_disp(self): # Test with a rather large problem (400 variables, # 40 constraints) generated by https://gist.github.com/denis-bz/8647461 # test that display option does not break anything. A, b, c = lpgen_2d(20, 20) res = linprog(c, A_ub=A, b_ub=b, method=self.method, options={"disp": True}) # disp is independent of sparse/dense _assert_success(res, desired_fun=-64.049494229) def test_callback(self): def f(): pass assert_raises(NotImplementedError, linprog, c=1, callback=f, method=self.method) class TestLinprogIPSparse(BaseTestLinprogIP): options = {"sparse": True} @pytest.mark.xfail(reason='Fails with ATLAS, see gh-7877') def test_bug_6690(self): # Test defined in base class, but can't mark as xfail there super(TestLinprogIPSparse, self).test_bug_6690() def test_magic_square_sparse_no_presolve(self): # test linprog with a problem with a rank-deficient A_eq matrix A, b, c, N = magic_square(3) with suppress_warnings() as sup: sup.filter(MatrixRankWarning, "Matrix is exactly singular") sup.filter(OptimizeWarning, "Solving system with option...") o = {key: self.options[key] for key in self.options} o["presolve"] = False res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1), options=o, method=self.method) _assert_success(res, desired_fun=1.730550597) def test_sparse_solve_options(self): A, b, c, N = magic_square(3) with suppress_warnings() as sup: sup.filter(OptimizeWarning, "A_eq does not appear...") sup.filter(OptimizeWarning, "Invalid permc_spec option") o = {key: self.options[key] for key in self.options} permc_specs = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD', 'ekki-ekki-ekki') for permc_spec in permc_specs: o["permc_spec"] = permc_spec res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1), method=self.method, options=o) _assert_success(res, desired_fun=1.730550597) class TestLinprogIPDense(BaseTestLinprogIP): options = {"sparse": False} class TestLinprogIPSparsePresolve(BaseTestLinprogIP): options = {"sparse": True, "_sparse_presolve": True} @pytest.mark.xfail(reason='Fails with ATLAS, see gh-7877') def test_bug_6690(self): # Test defined in base class, but can't mark as xfail there super(TestLinprogIPSparsePresolve, self).test_bug_6690()