"""Bounded-Variable Least-Squares algorithm.""" from __future__ import division, print_function, absolute_import import numpy as np from numpy.linalg import norm, lstsq from scipy.optimize import OptimizeResult from .common import print_header_linear, print_iteration_linear def compute_kkt_optimality(g, on_bound): """Compute the maximum violation of KKT conditions.""" g_kkt = g * on_bound free_set = on_bound == 0 g_kkt[free_set] = np.abs(g[free_set]) return np.max(g_kkt) def bvls(A, b, x_lsq, lb, ub, tol, max_iter, verbose): m, n = A.shape x = x_lsq.copy() on_bound = np.zeros(n) mask = x < lb x[mask] = lb[mask] on_bound[mask] = -1 mask = x > ub x[mask] = ub[mask] on_bound[mask] = 1 free_set = on_bound == 0 active_set = ~free_set free_set, = np.where(free_set) r = A.dot(x) - b cost = 0.5 * np.dot(r, r) initial_cost = cost g = A.T.dot(r) cost_change = None step_norm = None iteration = 0 if verbose == 2: print_header_linear() # This is the initialization loop. The requirement is that the # least-squares solution on free variables is feasible before BVLS starts. # One possible initialization is to set all variables to lower or upper # bounds, but many iterations may be required from this state later on. # The implemented ad-hoc procedure which intuitively should give a better # initial state: find the least-squares solution on current free variables, # if its feasible then stop, otherwise set violating variables to # corresponding bounds and continue on the reduced set of free variables. while free_set.size > 0: if verbose == 2: optimality = compute_kkt_optimality(g, on_bound) print_iteration_linear(iteration, cost, cost_change, step_norm, optimality) iteration += 1 x_free_old = x[free_set].copy() A_free = A[:, free_set] b_free = b - A.dot(x * active_set) z = lstsq(A_free, b_free, rcond=-1)[0] lbv = z < lb[free_set] ubv = z > ub[free_set] v = lbv | ubv if np.any(lbv): ind = free_set[lbv] x[ind] = lb[ind] active_set[ind] = True on_bound[ind] = -1 if np.any(ubv): ind = free_set[ubv] x[ind] = ub[ind] active_set[ind] = True on_bound[ind] = 1 ind = free_set[~v] x[ind] = z[~v] r = A.dot(x) - b cost_new = 0.5 * np.dot(r, r) cost_change = cost - cost_new cost = cost_new g = A.T.dot(r) step_norm = norm(x[free_set] - x_free_old) if np.any(v): free_set = free_set[~v] else: break if max_iter is None: max_iter = n max_iter += iteration termination_status = None # Main BVLS loop. optimality = compute_kkt_optimality(g, on_bound) for iteration in range(iteration, max_iter): if verbose == 2: print_iteration_linear(iteration, cost, cost_change, step_norm, optimality) if optimality < tol: termination_status = 1 if termination_status is not None: break move_to_free = np.argmax(g * on_bound) on_bound[move_to_free] = 0 free_set = on_bound == 0 active_set = ~free_set free_set, = np.nonzero(free_set) x_free = x[free_set] x_free_old = x_free.copy() lb_free = lb[free_set] ub_free = ub[free_set] A_free = A[:, free_set] b_free = b - A.dot(x * active_set) z = lstsq(A_free, b_free, rcond=-1)[0] lbv, = np.nonzero(z < lb_free) ubv, = np.nonzero(z > ub_free) v = np.hstack((lbv, ubv)) if v.size > 0: alphas = np.hstack(( lb_free[lbv] - x_free[lbv], ub_free[ubv] - x_free[ubv])) / (z[v] - x_free[v]) i = np.argmin(alphas) i_free = v[i] alpha = alphas[i] x_free *= 1 - alpha x_free += alpha * z if i < lbv.size: on_bound[free_set[i_free]] = -1 else: on_bound[free_set[i_free]] = 1 else: x_free = z x[free_set] = x_free step_norm = norm(x_free - x_free_old) r = A.dot(x) - b cost_new = 0.5 * np.dot(r, r) cost_change = cost - cost_new if cost_change < tol * cost: termination_status = 2 cost = cost_new g = A.T.dot(r) optimality = compute_kkt_optimality(g, on_bound) if termination_status is None: termination_status = 0 return OptimizeResult( x=x, fun=r, cost=cost, optimality=optimality, active_mask=on_bound, nit=iteration + 1, status=termination_status, initial_cost=initial_cost)