# Created by Pearu Peterson, September 2002 from __future__ import division, print_function, absolute_import __usage__ = """ Build fftpack: python setup_fftpack.py build Run tests if scipy is installed: python -c 'import scipy;scipy.fftpack.test()' Run tests if fftpack is not installed: python tests/test_basic.py """ from numpy.testing import (assert_equal, assert_array_almost_equal, assert_array_almost_equal_nulp, assert_array_less) import pytest from pytest import raises as assert_raises from scipy.fftpack import ifft,fft,fftn,ifftn,rfft,irfft, fft2 from scipy.fftpack import _fftpack as fftpack from scipy.fftpack.basic import _is_safe_size from numpy import (arange, add, array, asarray, zeros, dot, exp, pi, swapaxes, double, cdouble) import numpy as np import numpy.fft # "large" composite numbers supported by FFTPACK LARGE_COMPOSITE_SIZES = [ 2**13, 2**5 * 3**5, 2**3 * 3**3 * 5**2, ] SMALL_COMPOSITE_SIZES = [ 2, 2*3*5, 2*2*3*3, ] # prime LARGE_PRIME_SIZES = [ 2011 ] SMALL_PRIME_SIZES = [ 29 ] from numpy.random import rand def _assert_close_in_norm(x, y, rtol, size, rdt): # helper function for testing err_msg = "size: %s rdt: %s" % (size, rdt) assert_array_less(np.linalg.norm(x - y), rtol*np.linalg.norm(x), err_msg) def random(size): return rand(*size) def get_mat(n): data = arange(n) data = add.outer(data,data) return data def direct_dft(x): x = asarray(x) n = len(x) y = zeros(n,dtype=cdouble) w = -arange(n)*(2j*pi/n) for i in range(n): y[i] = dot(exp(i*w),x) return y def direct_idft(x): x = asarray(x) n = len(x) y = zeros(n,dtype=cdouble) w = arange(n)*(2j*pi/n) for i in range(n): y[i] = dot(exp(i*w),x)/n return y def direct_dftn(x): x = asarray(x) for axis in range(len(x.shape)): x = fft(x,axis=axis) return x def direct_idftn(x): x = asarray(x) for axis in range(len(x.shape)): x = ifft(x,axis=axis) return x def direct_rdft(x): x = asarray(x) n = len(x) w = -arange(n)*(2j*pi/n) r = zeros(n,dtype=double) for i in range(n//2+1): y = dot(exp(i*w),x) if i: r[2*i-1] = y.real if 2*i < n: r[2*i] = y.imag else: r[0] = y.real return r def direct_irdft(x): x = asarray(x) n = len(x) x1 = zeros(n,dtype=cdouble) for i in range(n//2+1): if i: if 2*i < n: x1[i] = x[2*i-1] + 1j*x[2*i] x1[n-i] = x[2*i-1] - 1j*x[2*i] else: x1[i] = x[2*i-1] else: x1[0] = x[0] return direct_idft(x1).real class _TestFFTBase(object): def setup_method(self): self.cdt = None self.rdt = None np.random.seed(1234) def test_definition(self): x = np.array([1,2,3,4+1j,1,2,3,4+2j], dtype=self.cdt) y = fft(x) assert_equal(y.dtype, self.cdt) y1 = direct_dft(x) assert_array_almost_equal(y,y1) x = np.array([1,2,3,4+0j,5], dtype=self.cdt) assert_array_almost_equal(fft(x),direct_dft(x)) def test_n_argument_real(self): x1 = np.array([1,2,3,4], dtype=self.rdt) x2 = np.array([1,2,3,4], dtype=self.rdt) y = fft([x1,x2],n=4) assert_equal(y.dtype, self.cdt) assert_equal(y.shape,(2,4)) assert_array_almost_equal(y[0],direct_dft(x1)) assert_array_almost_equal(y[1],direct_dft(x2)) def _test_n_argument_complex(self): x1 = np.array([1,2,3,4+1j], dtype=self.cdt) x2 = np.array([1,2,3,4+1j], dtype=self.cdt) y = fft([x1,x2],n=4) assert_equal(y.dtype, self.cdt) assert_equal(y.shape,(2,4)) assert_array_almost_equal(y[0],direct_dft(x1)) assert_array_almost_equal(y[1],direct_dft(x2)) def test_djbfft(self): for i in range(2,14): n = 2**i x = list(range(n)) y = fftpack.zfft(x) y2 = numpy.fft.fft(x) assert_array_almost_equal(y,y2) y = fftpack.zrfft(x) assert_array_almost_equal(y,y2) def test_invalid_sizes(self): assert_raises(ValueError, fft, []) assert_raises(ValueError, fft, [[1,1],[2,2]], -5) def test__is_safe_size(self): vals = [(0, True), (1, True), (2, True), (3, True), (4, True), (5, True), (6, True), (7, False), (15, True), (16, True), (17, False), (18, True), (21, False), (25, True), (50, True), (120, True), (210, False)] for n, is_safe in vals: assert_equal(_is_safe_size(n), is_safe) class TestDoubleFFT(_TestFFTBase): def setup_method(self): self.cdt = np.cdouble self.rdt = np.double class TestSingleFFT(_TestFFTBase): def setup_method(self): self.cdt = np.complex64 self.rdt = np.float32 @pytest.mark.xfail(run=False, reason="single-precision FFT implementation is partially disabled, until accuracy issues with large prime powers are resolved") def test_notice(self): pass class TestFloat16FFT(object): def test_1_argument_real(self): x1 = np.array([1, 2, 3, 4], dtype=np.float16) y = fft(x1, n=4) assert_equal(y.dtype, np.complex64) assert_equal(y.shape, (4, )) assert_array_almost_equal(y, direct_dft(x1.astype(np.float32))) def test_n_argument_real(self): x1 = np.array([1, 2, 3, 4], dtype=np.float16) x2 = np.array([1, 2, 3, 4], dtype=np.float16) y = fft([x1, x2], n=4) assert_equal(y.dtype, np.complex64) assert_equal(y.shape, (2, 4)) assert_array_almost_equal(y[0], direct_dft(x1.astype(np.float32))) assert_array_almost_equal(y[1], direct_dft(x2.astype(np.float32))) class _TestIFFTBase(object): def setup_method(self): np.random.seed(1234) def test_definition(self): x = np.array([1,2,3,4+1j,1,2,3,4+2j], self.cdt) y = ifft(x) y1 = direct_idft(x) assert_equal(y.dtype, self.cdt) assert_array_almost_equal(y,y1) x = np.array([1,2,3,4+0j,5], self.cdt) assert_array_almost_equal(ifft(x),direct_idft(x)) def test_definition_real(self): x = np.array([1,2,3,4,1,2,3,4], self.rdt) y = ifft(x) assert_equal(y.dtype, self.cdt) y1 = direct_idft(x) assert_array_almost_equal(y,y1) x = np.array([1,2,3,4,5], dtype=self.rdt) assert_equal(y.dtype, self.cdt) assert_array_almost_equal(ifft(x),direct_idft(x)) def test_djbfft(self): for i in range(2,14): n = 2**i x = list(range(n)) y = fftpack.zfft(x,direction=-1) y2 = numpy.fft.ifft(x) assert_array_almost_equal(y,y2) y = fftpack.zrfft(x,direction=-1) assert_array_almost_equal(y,y2) def test_random_complex(self): for size in [1,51,111,100,200,64,128,256,1024]: x = random([size]).astype(self.cdt) x = random([size]).astype(self.cdt) + 1j*x y1 = ifft(fft(x)) y2 = fft(ifft(x)) assert_equal(y1.dtype, self.cdt) assert_equal(y2.dtype, self.cdt) assert_array_almost_equal(y1, x) assert_array_almost_equal(y2, x) def test_random_real(self): for size in [1,51,111,100,200,64,128,256,1024]: x = random([size]).astype(self.rdt) y1 = ifft(fft(x)) y2 = fft(ifft(x)) assert_equal(y1.dtype, self.cdt) assert_equal(y2.dtype, self.cdt) assert_array_almost_equal(y1, x) assert_array_almost_equal(y2, x) def test_size_accuracy(self): # Sanity check for the accuracy for prime and non-prime sized inputs if self.rdt == np.float32: rtol = 1e-5 elif self.rdt == np.float64: rtol = 1e-10 for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES: np.random.seed(1234) x = np.random.rand(size).astype(self.rdt) y = ifft(fft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) y = fft(ifft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) x = (x + 1j*np.random.rand(size)).astype(self.cdt) y = ifft(fft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) y = fft(ifft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) def test_invalid_sizes(self): assert_raises(ValueError, ifft, []) assert_raises(ValueError, ifft, [[1,1],[2,2]], -5) class TestDoubleIFFT(_TestIFFTBase): def setup_method(self): self.cdt = np.cdouble self.rdt = np.double class TestSingleIFFT(_TestIFFTBase): def setup_method(self): self.cdt = np.complex64 self.rdt = np.float32 class _TestRFFTBase(object): def setup_method(self): np.random.seed(1234) def test_definition(self): for t in [[1, 2, 3, 4, 1, 2, 3, 4], [1, 2, 3, 4, 1, 2, 3, 4, 5]]: x = np.array(t, dtype=self.rdt) y = rfft(x) y1 = direct_rdft(x) assert_array_almost_equal(y,y1) assert_equal(y.dtype, self.rdt) def test_djbfft(self): from numpy.fft import fft as numpy_fft for i in range(2,14): n = 2**i x = list(range(n)) y2 = numpy_fft(x) y1 = zeros((n,),dtype=double) y1[0] = y2[0].real y1[-1] = y2[n//2].real for k in range(1, n//2): y1[2*k-1] = y2[k].real y1[2*k] = y2[k].imag y = fftpack.drfft(x) assert_array_almost_equal(y,y1) def test_invalid_sizes(self): assert_raises(ValueError, rfft, []) assert_raises(ValueError, rfft, [[1,1],[2,2]], -5) # See gh-5790 class MockSeries(object): def __init__(self, data): self.data = np.asarray(data) def __getattr__(self, item): try: return getattr(self.data, item) except AttributeError: raise AttributeError(("'MockSeries' object " "has no attribute '{attr}'". format(attr=item))) def test_non_ndarray_with_dtype(self): x = np.array([1., 2., 3., 4., 5.]) xs = _TestRFFTBase.MockSeries(x) expected = [1, 2, 3, 4, 5] out = rfft(xs) # Data should not have been overwritten assert_equal(x, expected) assert_equal(xs.data, expected) class TestRFFTDouble(_TestRFFTBase): def setup_method(self): self.cdt = np.cdouble self.rdt = np.double class TestRFFTSingle(_TestRFFTBase): def setup_method(self): self.cdt = np.complex64 self.rdt = np.float32 class _TestIRFFTBase(object): def setup_method(self): np.random.seed(1234) def test_definition(self): x1 = [1,2,3,4,1,2,3,4] x1_1 = [1,2+3j,4+1j,2+3j,4,2-3j,4-1j,2-3j] x2 = [1,2,3,4,1,2,3,4,5] x2_1 = [1,2+3j,4+1j,2+3j,4+5j,4-5j,2-3j,4-1j,2-3j] def _test(x, xr): y = irfft(np.array(x, dtype=self.rdt)) y1 = direct_irdft(x) assert_equal(y.dtype, self.rdt) assert_array_almost_equal(y,y1, decimal=self.ndec) assert_array_almost_equal(y,ifft(xr), decimal=self.ndec) _test(x1, x1_1) _test(x2, x2_1) def test_djbfft(self): from numpy.fft import ifft as numpy_ifft for i in range(2,14): n = 2**i x = list(range(n)) x1 = zeros((n,),dtype=cdouble) x1[0] = x[0] for k in range(1, n//2): x1[k] = x[2*k-1]+1j*x[2*k] x1[n-k] = x[2*k-1]-1j*x[2*k] x1[n//2] = x[-1] y1 = numpy_ifft(x1) y = fftpack.drfft(x,direction=-1) assert_array_almost_equal(y,y1) def test_random_real(self): for size in [1,51,111,100,200,64,128,256,1024]: x = random([size]).astype(self.rdt) y1 = irfft(rfft(x)) y2 = rfft(irfft(x)) assert_equal(y1.dtype, self.rdt) assert_equal(y2.dtype, self.rdt) assert_array_almost_equal(y1, x, decimal=self.ndec, err_msg="size=%d" % size) assert_array_almost_equal(y2, x, decimal=self.ndec, err_msg="size=%d" % size) def test_size_accuracy(self): # Sanity check for the accuracy for prime and non-prime sized inputs if self.rdt == np.float32: rtol = 1e-5 elif self.rdt == np.float64: rtol = 1e-10 for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES: np.random.seed(1234) x = np.random.rand(size).astype(self.rdt) y = irfft(rfft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) y = rfft(irfft(x)) _assert_close_in_norm(x, y, rtol, size, self.rdt) def test_invalid_sizes(self): assert_raises(ValueError, irfft, []) assert_raises(ValueError, irfft, [[1,1],[2,2]], -5) # self.ndec is bogus; we should have a assert_array_approx_equal for number of # significant digits class TestIRFFTDouble(_TestIRFFTBase): def setup_method(self): self.cdt = np.cdouble self.rdt = np.double self.ndec = 14 class TestIRFFTSingle(_TestIRFFTBase): def setup_method(self): self.cdt = np.complex64 self.rdt = np.float32 self.ndec = 5 class Testfft2(object): def setup_method(self): np.random.seed(1234) def test_regression_244(self): """fft returns wrong result with axes parameter.""" # fftn (and hence fft2) used to break when both axes and shape were # used x = numpy.ones((4,4,2)) y = fft2(x, shape=(8,8), axes=(-3,-2)) y_r = numpy.fft.fftn(x, s=(8, 8), axes=(-3, -2)) assert_array_almost_equal(y, y_r) def test_invalid_sizes(self): assert_raises(ValueError, fft2, [[]]) assert_raises(ValueError, fft2, [[1,1],[2,2]], (4, -3)) class TestFftnSingle(object): def setup_method(self): np.random.seed(1234) def test_definition(self): x = [[1,2,3],[4,5,6],[7,8,9]] y = fftn(np.array(x, np.float32)) if not y.dtype == np.complex64: raise ValueError("double precision output with single precision") y_r = np.array(fftn(x), np.complex64) assert_array_almost_equal_nulp(y, y_r) def test_size_accuracy(self): for size in SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES: np.random.seed(1234) x = np.random.rand(size, size) + 1j*np.random.rand(size, size) y1 = fftn(x.real.astype(np.float32)) y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) assert_equal(y1.dtype, np.complex64) assert_array_almost_equal_nulp(y1, y2, 2000) for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES: np.random.seed(1234) x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3) y1 = fftn(x.real.astype(np.float32)) y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) assert_equal(y1.dtype, np.complex64) assert_array_almost_equal_nulp(y1, y2, 2000) def test_definition_float16(self): x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] y = fftn(np.array(x, np.float16)) assert_equal(y.dtype, np.complex64) y_r = np.array(fftn(x), np.complex64) assert_array_almost_equal_nulp(y, y_r) def test_float16_input(self): for size in SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES: np.random.seed(1234) x = np.random.rand(size, size) + 1j*np.random.rand(size, size) y1 = fftn(x.real.astype(np.float16)) y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) assert_equal(y1.dtype, np.complex64) assert_array_almost_equal_nulp(y1, y2, 5e5) for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES: np.random.seed(1234) x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3) y1 = fftn(x.real.astype(np.float16)) y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) assert_equal(y1.dtype, np.complex64) assert_array_almost_equal_nulp(y1, y2, 2e6) class TestFftn(object): def setup_method(self): np.random.seed(1234) def test_definition(self): x = [[1,2,3],[4,5,6],[7,8,9]] y = fftn(x) assert_array_almost_equal(y,direct_dftn(x)) x = random((20,26)) assert_array_almost_equal(fftn(x),direct_dftn(x)) x = random((5,4,3,20)) assert_array_almost_equal(fftn(x),direct_dftn(x)) def test_axes_argument(self): # plane == ji_plane, x== kji_space plane1 = [[1,2,3],[4,5,6],[7,8,9]] plane2 = [[10,11,12],[13,14,15],[16,17,18]] plane3 = [[19,20,21],[22,23,24],[25,26,27]] ki_plane1 = [[1,2,3],[10,11,12],[19,20,21]] ki_plane2 = [[4,5,6],[13,14,15],[22,23,24]] ki_plane3 = [[7,8,9],[16,17,18],[25,26,27]] jk_plane1 = [[1,10,19],[4,13,22],[7,16,25]] jk_plane2 = [[2,11,20],[5,14,23],[8,17,26]] jk_plane3 = [[3,12,21],[6,15,24],[9,18,27]] kj_plane1 = [[1,4,7],[10,13,16],[19,22,25]] kj_plane2 = [[2,5,8],[11,14,17],[20,23,26]] kj_plane3 = [[3,6,9],[12,15,18],[21,24,27]] ij_plane1 = [[1,4,7],[2,5,8],[3,6,9]] ij_plane2 = [[10,13,16],[11,14,17],[12,15,18]] ij_plane3 = [[19,22,25],[20,23,26],[21,24,27]] ik_plane1 = [[1,10,19],[2,11,20],[3,12,21]] ik_plane2 = [[4,13,22],[5,14,23],[6,15,24]] ik_plane3 = [[7,16,25],[8,17,26],[9,18,27]] ijk_space = [jk_plane1,jk_plane2,jk_plane3] ikj_space = [kj_plane1,kj_plane2,kj_plane3] jik_space = [ik_plane1,ik_plane2,ik_plane3] jki_space = [ki_plane1,ki_plane2,ki_plane3] kij_space = [ij_plane1,ij_plane2,ij_plane3] x = array([plane1,plane2,plane3]) assert_array_almost_equal(fftn(x),fftn(x,axes=(-3,-2,-1))) # kji_space assert_array_almost_equal(fftn(x),fftn(x,axes=(0,1,2))) assert_array_almost_equal(fftn(x,axes=(0, 2)),fftn(x,axes=(0,-1))) y = fftn(x,axes=(2,1,0)) # ijk_space assert_array_almost_equal(swapaxes(y,-1,-3),fftn(ijk_space)) y = fftn(x,axes=(2,0,1)) # ikj_space assert_array_almost_equal(swapaxes(swapaxes(y,-1,-3), -1,-2), fftn(ikj_space)) y = fftn(x,axes=(1,2,0)) # jik_space assert_array_almost_equal(swapaxes(swapaxes(y,-1,-3), -3,-2), fftn(jik_space)) y = fftn(x,axes=(1,0,2)) # jki_space assert_array_almost_equal(swapaxes(y,-2,-3),fftn(jki_space)) y = fftn(x,axes=(0,2,1)) # kij_space assert_array_almost_equal(swapaxes(y,-2,-1), fftn(kij_space)) y = fftn(x,axes=(-2,-1)) # ji_plane assert_array_almost_equal(fftn(plane1),y[0]) assert_array_almost_equal(fftn(plane2),y[1]) assert_array_almost_equal(fftn(plane3),y[2]) y = fftn(x,axes=(1,2)) # ji_plane assert_array_almost_equal(fftn(plane1),y[0]) assert_array_almost_equal(fftn(plane2),y[1]) assert_array_almost_equal(fftn(plane3),y[2]) y = fftn(x,axes=(-3,-2)) # kj_plane assert_array_almost_equal(fftn(x[:,:,0]),y[:,:,0]) assert_array_almost_equal(fftn(x[:,:,1]),y[:,:,1]) assert_array_almost_equal(fftn(x[:,:,2]),y[:,:,2]) y = fftn(x,axes=(-3,-1)) # ki_plane assert_array_almost_equal(fftn(x[:,0,:]),y[:,0,:]) assert_array_almost_equal(fftn(x[:,1,:]),y[:,1,:]) assert_array_almost_equal(fftn(x[:,2,:]),y[:,2,:]) y = fftn(x,axes=(-1,-2)) # ij_plane assert_array_almost_equal(fftn(ij_plane1),swapaxes(y[0],-2,-1)) assert_array_almost_equal(fftn(ij_plane2),swapaxes(y[1],-2,-1)) assert_array_almost_equal(fftn(ij_plane3),swapaxes(y[2],-2,-1)) y = fftn(x,axes=(-1,-3)) # ik_plane assert_array_almost_equal(fftn(ik_plane1),swapaxes(y[:,0,:],-1,-2)) assert_array_almost_equal(fftn(ik_plane2),swapaxes(y[:,1,:],-1,-2)) assert_array_almost_equal(fftn(ik_plane3),swapaxes(y[:,2,:],-1,-2)) y = fftn(x,axes=(-2,-3)) # jk_plane assert_array_almost_equal(fftn(jk_plane1),swapaxes(y[:,:,0],-1,-2)) assert_array_almost_equal(fftn(jk_plane2),swapaxes(y[:,:,1],-1,-2)) assert_array_almost_equal(fftn(jk_plane3),swapaxes(y[:,:,2],-1,-2)) y = fftn(x,axes=(-1,)) # i_line for i in range(3): for j in range(3): assert_array_almost_equal(fft(x[i,j,:]),y[i,j,:]) y = fftn(x,axes=(-2,)) # j_line for i in range(3): for j in range(3): assert_array_almost_equal(fft(x[i,:,j]),y[i,:,j]) y = fftn(x,axes=(0,)) # k_line for i in range(3): for j in range(3): assert_array_almost_equal(fft(x[:,i,j]),y[:,i,j]) y = fftn(x,axes=()) # point assert_array_almost_equal(y,x) def test_shape_argument(self): small_x = [[1,2,3],[4,5,6]] large_x1 = [[1,2,3,0],[4,5,6,0],[0,0,0,0],[0,0,0,0]] y = fftn(small_x,shape=(4,4)) assert_array_almost_equal(y,fftn(large_x1)) y = fftn(small_x,shape=(3,4)) assert_array_almost_equal(y,fftn(large_x1[:-1])) def test_shape_axes_argument(self): small_x = [[1,2,3],[4,5,6],[7,8,9]] large_x1 = array([[1,2,3,0], [4,5,6,0], [7,8,9,0], [0,0,0,0]]) # Disable tests with shape and axes of different lengths # y = fftn(small_x,shape=(4,4),axes=(-1,)) # for i in range(4): # assert_array_almost_equal (y[i],fft(large_x1[i])) # y = fftn(small_x,shape=(4,4),axes=(-2,)) # for i in range(4): # assert_array_almost_equal (y[:,i],fft(large_x1[:,i])) y = fftn(small_x,shape=(4,4),axes=(-2,-1)) assert_array_almost_equal(y,fftn(large_x1)) y = fftn(small_x,shape=(4,4),axes=(-1,-2)) assert_array_almost_equal(y,swapaxes( fftn(swapaxes(large_x1,-1,-2)),-1,-2)) def test_shape_axes_argument2(self): # Change shape of the last axis x = numpy.random.random((10, 5, 3, 7)) y = fftn(x, axes=(-1,), shape=(8,)) assert_array_almost_equal(y, fft(x, axis=-1, n=8)) # Change shape of an arbitrary axis which is not the last one x = numpy.random.random((10, 5, 3, 7)) y = fftn(x, axes=(-2,), shape=(8,)) assert_array_almost_equal(y, fft(x, axis=-2, n=8)) # Change shape of axes: cf #244, where shape and axes were mixed up x = numpy.random.random((4,4,2)) y = fftn(x, axes=(-3,-2), shape=(8,8)) assert_array_almost_equal(y, numpy.fft.fftn(x, axes=(-3, -2), s=(8, 8))) def test_shape_argument_more(self): """Test that fftn raises ValueError when s.shape is longer than x.shape""" x = zeros((4, 4, 2)) assert_raises(ValueError, fftn, x, shape=(8, 8, 2, 1)) def test_invalid_sizes(self): assert_raises(ValueError, fftn, [[]]) assert_raises(ValueError, fftn, [[1,1],[2,2]], (4, -3)) class _TestIfftn(object): dtype = None cdtype = None def setup_method(self): np.random.seed(1234) def test_definition(self): x = np.array([[1,2,3],[4,5,6],[7,8,9]], dtype=self.dtype) y = ifftn(x) assert_equal(y.dtype, self.cdtype) assert_array_almost_equal_nulp(y,direct_idftn(x),self.maxnlp) x = random((20,26)) assert_array_almost_equal_nulp(ifftn(x),direct_idftn(x),self.maxnlp) x = random((5,4,3,20)) assert_array_almost_equal_nulp(ifftn(x),direct_idftn(x),self.maxnlp) def test_random_complex(self): for size in [1,2,51,32,64,92]: x = random([size,size]) + 1j*random([size,size]) assert_array_almost_equal_nulp(ifftn(fftn(x)),x,self.maxnlp) assert_array_almost_equal_nulp(fftn(ifftn(x)),x,self.maxnlp) def test_invalid_sizes(self): assert_raises(ValueError, ifftn, [[]]) assert_raises(ValueError, ifftn, [[1,1],[2,2]], (4, -3)) class TestIfftnDouble(_TestIfftn): dtype = np.float64 cdtype = np.complex128 maxnlp = 2000 class TestIfftnSingle(_TestIfftn): dtype = np.float32 cdtype = np.complex64 maxnlp = 3500 class TestLongDoubleFailure(object): def setup_method(self): np.random.seed(1234) def test_complex(self): if np.dtype(np.longcomplex).itemsize == np.dtype(complex).itemsize: # longdouble == double; so fft is supported return x = np.random.randn(10).astype(np.longdouble) + \ 1j * np.random.randn(10).astype(np.longdouble) for f in [fft, ifft]: try: f(x) raise AssertionError("Type %r not supported but does not fail" % np.longcomplex) except ValueError: pass def test_real(self): if np.dtype(np.longdouble).itemsize == np.dtype(np.double).itemsize: # longdouble == double; so fft is supported return x = np.random.randn(10).astype(np.longcomplex) for f in [fft, ifft]: try: f(x) raise AssertionError("Type %r not supported but does not fail" % np.longcomplex) except ValueError: pass class FakeArray(object): def __init__(self, data): self._data = data self.__array_interface__ = data.__array_interface__ class FakeArray2(object): def __init__(self, data): self._data = data def __array__(self): return self._data class TestOverwrite(object): """Check input overwrite behavior of the FFT functions """ real_dtypes = [np.float32, np.float64] dtypes = real_dtypes + [np.complex64, np.complex128] def _check(self, x, routine, fftsize, axis, overwrite_x, should_overwrite): x2 = x.copy() for fake in [lambda x: x, FakeArray, FakeArray2]: routine(fake(x2), fftsize, axis, overwrite_x=overwrite_x) sig = "%s(%s%r, %r, axis=%r, overwrite_x=%r)" % ( routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x) if not should_overwrite: assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig) def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes): np.random.seed(1234) if np.issubdtype(dtype, np.complexfloating): data = np.random.randn(*shape) + 1j*np.random.randn(*shape) else: data = np.random.randn(*shape) data = data.astype(dtype) for fftsize in [8, 16, 32]: for overwrite_x in [True, False]: should_overwrite = (overwrite_x and dtype in overwritable_dtypes and fftsize <= shape[axis] and (len(shape) == 1 or (axis % len(shape) == len(shape)-1 and fftsize == shape[axis]))) self._check(data, routine, fftsize, axis, overwrite_x=overwrite_x, should_overwrite=should_overwrite) def test_fft(self): overwritable = (np.complex128, np.complex64) for dtype in self.dtypes: self._check_1d(fft, dtype, (16,), -1, overwritable) self._check_1d(fft, dtype, (16, 2), 0, overwritable) self._check_1d(fft, dtype, (2, 16), 1, overwritable) def test_ifft(self): overwritable = (np.complex128, np.complex64) for dtype in self.dtypes: self._check_1d(ifft, dtype, (16,), -1, overwritable) self._check_1d(ifft, dtype, (16, 2), 0, overwritable) self._check_1d(ifft, dtype, (2, 16), 1, overwritable) def test_rfft(self): overwritable = self.real_dtypes for dtype in self.real_dtypes: self._check_1d(rfft, dtype, (16,), -1, overwritable) self._check_1d(rfft, dtype, (16, 2), 0, overwritable) self._check_1d(rfft, dtype, (2, 16), 1, overwritable) def test_irfft(self): overwritable = self.real_dtypes for dtype in self.real_dtypes: self._check_1d(irfft, dtype, (16,), -1, overwritable) self._check_1d(irfft, dtype, (16, 2), 0, overwritable) self._check_1d(irfft, dtype, (2, 16), 1, overwritable) def _check_nd_one(self, routine, dtype, shape, axes, overwritable_dtypes): np.random.seed(1234) if np.issubdtype(dtype, np.complexfloating): data = np.random.randn(*shape) + 1j*np.random.randn(*shape) else: data = np.random.randn(*shape) data = data.astype(dtype) def fftshape_iter(shp): if len(shp) <= 0: yield () else: for j in (shp[0]//2, shp[0], shp[0]*2): for rest in fftshape_iter(shp[1:]): yield (j,) + rest if axes is None: part_shape = shape else: part_shape = tuple(np.take(shape, axes)) for overwrite_x in [True, False]: for fftshape in fftshape_iter(part_shape): should_overwrite = (overwrite_x and data.ndim == 1 and np.all([x < y for x, y in zip(fftshape, part_shape)]) and dtype in overwritable_dtypes) self._check(data, routine, fftshape, axes, overwrite_x=overwrite_x, should_overwrite=should_overwrite) if data.ndim > 1: # check fortran order: it never overwrites self._check(data.T, routine, fftshape, axes, overwrite_x=overwrite_x, should_overwrite=False) def _check_nd(self, routine, dtype, overwritable): self._check_nd_one(routine, dtype, (16,), None, overwritable) self._check_nd_one(routine, dtype, (16,), (0,), overwritable) self._check_nd_one(routine, dtype, (16, 2), (0,), overwritable) self._check_nd_one(routine, dtype, (2, 16), (1,), overwritable) self._check_nd_one(routine, dtype, (8, 16), None, overwritable) self._check_nd_one(routine, dtype, (8, 16), (0, 1), overwritable) self._check_nd_one(routine, dtype, (8, 16, 2), (0, 1), overwritable) self._check_nd_one(routine, dtype, (8, 16, 2), (1, 2), overwritable) self._check_nd_one(routine, dtype, (8, 16, 2), (0,), overwritable) self._check_nd_one(routine, dtype, (8, 16, 2), (1,), overwritable) self._check_nd_one(routine, dtype, (8, 16, 2), (2,), overwritable) self._check_nd_one(routine, dtype, (8, 16, 2), None, overwritable) self._check_nd_one(routine, dtype, (8, 16, 2), (0,1,2), overwritable) def test_fftn(self): overwritable = (np.complex128, np.complex64) for dtype in self.dtypes: self._check_nd(fftn, dtype, overwritable) def test_ifftn(self): overwritable = (np.complex128, np.complex64) for dtype in self.dtypes: self._check_nd(ifftn, dtype, overwritable)