import pytest import decimal import numpy as np import pandas as pd from pandas import to_numeric from pandas.util import testing as tm from numpy import iinfo class TestToNumeric(object): def test_empty(self): # see gh-16302 s = pd.Series([], dtype=object) res = to_numeric(s) expected = pd.Series([], dtype=np.int64) tm.assert_series_equal(res, expected) # Original issue example res = to_numeric(s, errors='coerce', downcast='integer') expected = pd.Series([], dtype=np.int8) tm.assert_series_equal(res, expected) def test_series(self): s = pd.Series(['1', '-3.14', '7']) res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series(['1', '-3.14', 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) def test_series_numeric(self): s = pd.Series([1, 3, 4, 5], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) s = pd.Series([1., 3., 4., 5.], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) # bool is regarded as numeric s = pd.Series([True, False, True, True], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) def test_error(self): s = pd.Series([1, -3.14, 'apple']) msg = 'Unable to parse string "apple" at position 2' with tm.assert_raises_regex(ValueError, msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([1, -3.14, 'apple']) tm.assert_series_equal(res, expected) res = to_numeric(s, errors='coerce') expected = pd.Series([1, -3.14, np.nan]) tm.assert_series_equal(res, expected) s = pd.Series(['orange', 1, -3.14, 'apple']) msg = 'Unable to parse string "orange" at position 0' with tm.assert_raises_regex(ValueError, msg): to_numeric(s, errors='raise') def test_error_seen_bool(self): s = pd.Series([True, False, 'apple']) msg = 'Unable to parse string "apple" at position 2' with tm.assert_raises_regex(ValueError, msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([True, False, 'apple']) tm.assert_series_equal(res, expected) # coerces to float res = to_numeric(s, errors='coerce') expected = pd.Series([1., 0., np.nan]) tm.assert_series_equal(res, expected) def test_list(self): s = ['1', '-3.14', '7'] res = to_numeric(s) expected = np.array([1, -3.14, 7]) tm.assert_numpy_array_equal(res, expected) def test_list_numeric(self): s = [1, 3, 4, 5] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s, dtype=np.int64)) s = [1., 3., 4., 5.] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) # bool is regarded as numeric s = [True, False, True, True] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) def test_numeric(self): s = pd.Series([1, -3.14, 7], dtype='O') res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series([1, -3.14, 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) # GH 14827 df = pd.DataFrame(dict( a=[1.2, decimal.Decimal(3.14), decimal.Decimal("infinity"), '0.1'], b=[1.0, 2.0, 3.0, 4.0], )) expected = pd.DataFrame(dict( a=[1.2, 3.14, np.inf, 0.1], b=[1.0, 2.0, 3.0, 4.0], )) # Test to_numeric over one column df_copy = df.copy() df_copy['a'] = df_copy['a'].apply(to_numeric) tm.assert_frame_equal(df_copy, expected) # Test to_numeric over multiple columns df_copy = df.copy() df_copy[['a', 'b']] = df_copy[['a', 'b']].apply(to_numeric) tm.assert_frame_equal(df_copy, expected) def test_numeric_lists_and_arrays(self): # Test to_numeric with embedded lists and arrays df = pd.DataFrame(dict( a=[[decimal.Decimal(3.14), 1.0], decimal.Decimal(1.6), 0.1] )) df['a'] = df['a'].apply(to_numeric) expected = pd.DataFrame(dict( a=[[3.14, 1.0], 1.6, 0.1], )) tm.assert_frame_equal(df, expected) df = pd.DataFrame(dict( a=[np.array([decimal.Decimal(3.14), 1.0]), 0.1] )) df['a'] = df['a'].apply(to_numeric) expected = pd.DataFrame(dict( a=[[3.14, 1.0], 0.1], )) tm.assert_frame_equal(df, expected) def test_all_nan(self): s = pd.Series(['a', 'b', 'c']) res = to_numeric(s, errors='coerce') expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(res, expected) def test_type_check(self): # GH 11776 df = pd.DataFrame({'a': [1, -3.14, 7], 'b': ['4', '5', '6']}) with tm.assert_raises_regex(TypeError, "1-d array"): to_numeric(df) for errors in ['ignore', 'raise', 'coerce']: with tm.assert_raises_regex(TypeError, "1-d array"): to_numeric(df, errors=errors) def test_scalar(self): assert pd.to_numeric(1) == 1 assert pd.to_numeric(1.1) == 1.1 assert pd.to_numeric('1') == 1 assert pd.to_numeric('1.1') == 1.1 with pytest.raises(ValueError): to_numeric('XX', errors='raise') assert to_numeric('XX', errors='ignore') == 'XX' assert np.isnan(to_numeric('XX', errors='coerce')) def test_numeric_dtypes(self): idx = pd.Index([1, 2, 3], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) idx = pd.Index([1., np.nan, 3., np.nan], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) def test_str(self): idx = pd.Index(['1', '2', '3'], name='xxx') exp = np.array([1, 2, 3], dtype='int64') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) idx = pd.Index(['1.5', '2.7', '3.4'], name='xxx') exp = np.array([1.5, 2.7, 3.4]) res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) def test_datetimelike(self): for tz in [None, 'US/Eastern', 'Asia/Tokyo']: idx = pd.date_range('20130101', periods=3, tz=tz, name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_timedelta(self): idx = pd.timedelta_range('1 days', periods=3, freq='D', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_period(self): idx = pd.period_range('2011-01', periods=3, freq='M', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) # ToDo: enable when we can support native PeriodDtype # res = pd.to_numeric(pd.Series(idx, name='xxx')) # tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) def test_non_hashable(self): # Test for Bug #13324 s = pd.Series([[10.0, 2], 1.0, 'apple']) res = pd.to_numeric(s, errors='coerce') tm.assert_series_equal(res, pd.Series([np.nan, 1.0, np.nan])) res = pd.to_numeric(s, errors='ignore') tm.assert_series_equal(res, pd.Series([[10.0, 2], 1.0, 'apple'])) with tm.assert_raises_regex(TypeError, "Invalid object type"): pd.to_numeric(s) def test_downcast(self): # see gh-13352 mixed_data = ['1', 2, 3] int_data = [1, 2, 3] date_data = np.array(['1970-01-02', '1970-01-03', '1970-01-04'], dtype='datetime64[D]') invalid_downcast = 'unsigned-integer' msg = 'invalid downcasting method provided' smallest_int_dtype = np.dtype(np.typecodes['Integer'][0]) smallest_uint_dtype = np.dtype(np.typecodes['UnsignedInteger'][0]) # support below np.float32 is rare and far between float_32_char = np.dtype(np.float32).char smallest_float_dtype = float_32_char for data in (mixed_data, int_data, date_data): with tm.assert_raises_regex(ValueError, msg): pd.to_numeric(data, downcast=invalid_downcast) expected = np.array([1, 2, 3], dtype=np.int64) res = pd.to_numeric(data) tm.assert_numpy_array_equal(res, expected) res = pd.to_numeric(data, downcast=None) tm.assert_numpy_array_equal(res, expected) expected = np.array([1, 2, 3], dtype=smallest_int_dtype) for signed_downcast in ('integer', 'signed'): res = pd.to_numeric(data, downcast=signed_downcast) tm.assert_numpy_array_equal(res, expected) expected = np.array([1, 2, 3], dtype=smallest_uint_dtype) res = pd.to_numeric(data, downcast='unsigned') tm.assert_numpy_array_equal(res, expected) expected = np.array([1, 2, 3], dtype=smallest_float_dtype) res = pd.to_numeric(data, downcast='float') tm.assert_numpy_array_equal(res, expected) # if we can't successfully cast the given # data to a numeric dtype, do not bother # with the downcast parameter data = ['foo', 2, 3] expected = np.array(data, dtype=object) res = pd.to_numeric(data, errors='ignore', downcast='unsigned') tm.assert_numpy_array_equal(res, expected) # cannot cast to an unsigned integer because # we have a negative number data = ['-1', 2, 3] expected = np.array([-1, 2, 3], dtype=np.int64) res = pd.to_numeric(data, downcast='unsigned') tm.assert_numpy_array_equal(res, expected) # cannot cast to an integer (signed or unsigned) # because we have a float number data = (['1.1', 2, 3], [10000.0, 20000, 3000, 40000.36, 50000, 50000.00]) expected = (np.array([1.1, 2, 3], dtype=np.float64), np.array([10000.0, 20000, 3000, 40000.36, 50000, 50000.00], dtype=np.float64)) for _data, _expected in zip(data, expected): for downcast in ('integer', 'signed', 'unsigned'): res = pd.to_numeric(_data, downcast=downcast) tm.assert_numpy_array_equal(res, _expected) # the smallest integer dtype need not be np.(u)int8 data = ['256', 257, 258] for downcast, expected_dtype in zip( ['integer', 'signed', 'unsigned'], [np.int16, np.int16, np.uint16]): expected = np.array([256, 257, 258], dtype=expected_dtype) res = pd.to_numeric(data, downcast=downcast) tm.assert_numpy_array_equal(res, expected) def test_downcast_limits(self): # Test the limits of each downcast. Bug: #14401. i = 'integer' u = 'unsigned' dtype_downcast_min_max = [ ('int8', i, [iinfo(np.int8).min, iinfo(np.int8).max]), ('int16', i, [iinfo(np.int16).min, iinfo(np.int16).max]), ('int32', i, [iinfo(np.int32).min, iinfo(np.int32).max]), ('int64', i, [iinfo(np.int64).min, iinfo(np.int64).max]), ('uint8', u, [iinfo(np.uint8).min, iinfo(np.uint8).max]), ('uint16', u, [iinfo(np.uint16).min, iinfo(np.uint16).max]), ('uint32', u, [iinfo(np.uint32).min, iinfo(np.uint32).max]), ('uint64', u, [iinfo(np.uint64).min, iinfo(np.uint64).max]), ('int16', i, [iinfo(np.int8).min, iinfo(np.int8).max + 1]), ('int32', i, [iinfo(np.int16).min, iinfo(np.int16).max + 1]), ('int64', i, [iinfo(np.int32).min, iinfo(np.int32).max + 1]), ('int16', i, [iinfo(np.int8).min - 1, iinfo(np.int16).max]), ('int32', i, [iinfo(np.int16).min - 1, iinfo(np.int32).max]), ('int64', i, [iinfo(np.int32).min - 1, iinfo(np.int64).max]), ('uint16', u, [iinfo(np.uint8).min, iinfo(np.uint8).max + 1]), ('uint32', u, [iinfo(np.uint16).min, iinfo(np.uint16).max + 1]), ('uint64', u, [iinfo(np.uint32).min, iinfo(np.uint32).max + 1]) ] for dtype, downcast, min_max in dtype_downcast_min_max: series = pd.to_numeric(pd.Series(min_max), downcast=downcast) assert series.dtype == dtype def test_coerce_uint64_conflict(self): # see gh-17007 and gh-17125 # # Still returns float despite the uint64-nan conflict, # which would normally force the casting to object. df = pd.DataFrame({"a": [200, 300, "", "NaN", 30000000000000000000]}) expected = pd.Series([200, 300, np.nan, np.nan, 30000000000000000000], dtype=float, name="a") result = to_numeric(df["a"], errors="coerce") tm.assert_series_equal(result, expected) s = pd.Series(["12345678901234567890", "1234567890", "ITEM"]) expected = pd.Series([12345678901234567890, 1234567890, np.nan], dtype=float) result = to_numeric(s, errors="coerce") tm.assert_series_equal(result, expected) # For completeness, check against "ignore" and "raise" result = to_numeric(s, errors="ignore") tm.assert_series_equal(result, s) msg = "Unable to parse string" with tm.assert_raises_regex(ValueError, msg): to_numeric(s, errors="raise")