import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.core.indexes.period as period from pandas import Series, period_range, DataFrame def _permute(obj): return obj.take(np.random.permutation(len(obj))) class TestSeriesPeriod(object): def setup_method(self, method): self.series = Series(period_range('2000-01-01', periods=10, freq='D')) def test_auto_conversion(self): series = Series(list(period_range('2000-01-01', periods=10, freq='D'))) assert series.dtype == 'object' series = pd.Series([pd.Period('2011-01-01', freq='D'), pd.Period('2011-02-01', freq='D')]) assert series.dtype == 'object' def test_getitem(self): assert self.series[1] == pd.Period('2000-01-02', freq='D') result = self.series[[2, 4]] exp = pd.Series([pd.Period('2000-01-03', freq='D'), pd.Period('2000-01-05', freq='D')], index=[2, 4]) tm.assert_series_equal(result, exp) assert result.dtype == 'object' def test_isna(self): # GH 13737 s = Series([pd.Period('2011-01', freq='M'), pd.Period('NaT', freq='M')]) tm.assert_series_equal(s.isna(), Series([False, True])) tm.assert_series_equal(s.notna(), Series([True, False])) def test_fillna(self): # GH 13737 s = Series([pd.Period('2011-01', freq='M'), pd.Period('NaT', freq='M')]) res = s.fillna(pd.Period('2012-01', freq='M')) exp = Series([pd.Period('2011-01', freq='M'), pd.Period('2012-01', freq='M')]) tm.assert_series_equal(res, exp) assert res.dtype == 'object' res = s.fillna('XXX') exp = Series([pd.Period('2011-01', freq='M'), 'XXX']) tm.assert_series_equal(res, exp) assert res.dtype == 'object' def test_dropna(self): # GH 13737 s = Series([pd.Period('2011-01', freq='M'), pd.Period('NaT', freq='M')]) tm.assert_series_equal(s.dropna(), Series([pd.Period('2011-01', freq='M')])) def test_between(self): left, right = self.series[[2, 7]] result = self.series.between(left, right) expected = (self.series >= left) & (self.series <= right) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # NaT support """ # ToDo: Enable when support period dtype def test_NaT_scalar(self): series = Series([0, 1000, 2000, iNaT], dtype='period[D]') val = series[3] assert isna(val) series[2] = val assert isna(series[2]) def test_NaT_cast(self): result = Series([np.nan]).astype('period[D]') expected = Series([NaT]) tm.assert_series_equal(result, expected) """ def test_set_none_nan(self): # currently Period is stored as object dtype, not as NaT self.series[3] = None assert self.series[3] is None self.series[3:5] = None assert self.series[4] is None self.series[5] = np.nan assert np.isnan(self.series[5]) self.series[5:7] = np.nan assert np.isnan(self.series[6]) def test_intercept_astype_object(self): expected = self.series.astype('object') df = DataFrame({'a': self.series, 'b': np.random.randn(len(self.series))}) result = df.values.squeeze() assert (result[:, 0] == expected.values).all() df = DataFrame({'a': self.series, 'b': ['foo'] * len(self.series)}) result = df.values.squeeze() assert (result[:, 0] == expected.values).all() def test_add_series(self): rng = period_range('1/1/2000', '1/1/2010', freq='A') ts = Series(np.random.randn(len(rng)), index=rng) result = ts + ts[::2] expected = ts + ts expected[1::2] = np.nan tm.assert_series_equal(result, expected) result = ts + _permute(ts[::2]) tm.assert_series_equal(result, expected) msg = "Input has different freq=D from PeriodIndex\\(freq=A-DEC\\)" with tm.assert_raises_regex(period.IncompatibleFrequency, msg): ts + ts.asfreq('D', how="end") def test_align_series(self, join_type): rng = period_range('1/1/2000', '1/1/2010', freq='A') ts = Series(np.random.randn(len(rng)), index=rng) ts.align(ts[::2], join=join_type) def test_truncate(self): # GH 17717 idx1 = pd.PeriodIndex([ pd.Period('2017-09-02'), pd.Period('2017-09-02'), pd.Period('2017-09-03') ]) series1 = pd.Series([1, 2, 3], index=idx1) result1 = series1.truncate(after='2017-09-02') expected_idx1 = pd.PeriodIndex([ pd.Period('2017-09-02'), pd.Period('2017-09-02') ]) tm.assert_series_equal(result1, pd.Series([1, 2], index=expected_idx1)) idx2 = pd.PeriodIndex([ pd.Period('2017-09-03'), pd.Period('2017-09-02'), pd.Period('2017-09-03') ]) series2 = pd.Series([1, 2, 3], index=idx2) result2 = series2.sort_index().truncate(after='2017-09-02') expected_idx2 = pd.PeriodIndex([ pd.Period('2017-09-02') ]) tm.assert_series_equal(result2, pd.Series([2], index=expected_idx2))