# pylint: disable=E1101,E1103,W0232 """ manage legacy pickle tests How to add pickle tests: 1. Install pandas version intended to output the pickle. 2. Execute "generate_legacy_storage_files.py" to create the pickle. $ python generate_legacy_storage_files.py pickle 3. Move the created pickle to "data/legacy_pickle/" directory. """ import glob import pytest from warnings import catch_warnings import os from distutils.version import LooseVersion import pandas as pd from pandas import Index from pandas.compat import is_platform_little_endian, PY3 import pandas import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.tseries.offsets import Day, MonthEnd import shutil @pytest.fixture(scope='module') def current_pickle_data(): # our current version pickle data from pandas.tests.io.generate_legacy_storage_files import ( create_pickle_data) return create_pickle_data() # --------------------- # comparison functions # --------------------- def compare_element(result, expected, typ, version=None): if isinstance(expected, Index): tm.assert_index_equal(expected, result) return if typ.startswith('sp_'): comparator = getattr(tm, "assert_%s_equal" % typ) comparator(result, expected, exact_indices=False) elif typ == 'timestamp': if expected is pd.NaT: assert result is pd.NaT else: assert result == expected assert result.freq == expected.freq else: comparator = getattr(tm, "assert_%s_equal" % typ, tm.assert_almost_equal) comparator(result, expected) def compare(data, vf, version): # py3 compat when reading py2 pickle try: data = pandas.read_pickle(vf) except (ValueError) as e: if 'unsupported pickle protocol:' in str(e): # trying to read a py3 pickle in py2 return else: raise m = globals() for typ, dv in data.items(): for dt, result in dv.items(): try: expected = data[typ][dt] except (KeyError): if version in ('0.10.1', '0.11.0') and dt == 'reg': break else: raise # use a specific comparator # if available comparator = "compare_{typ}_{dt}".format(typ=typ, dt=dt) comparator = m.get(comparator, m['compare_element']) comparator(result, expected, typ, version) return data def compare_sp_series_ts(res, exp, typ, version): # SparseTimeSeries integrated into SparseSeries in 0.12.0 # and deprecated in 0.17.0 if version and LooseVersion(version) <= LooseVersion("0.12.0"): tm.assert_sp_series_equal(res, exp, check_series_type=False) else: tm.assert_sp_series_equal(res, exp) def compare_series_ts(result, expected, typ, version): # GH 7748 tm.assert_series_equal(result, expected) assert result.index.freq == expected.index.freq assert not result.index.freq.normalize tm.assert_series_equal(result > 0, expected > 0) # GH 9291 freq = result.index.freq assert freq + Day(1) == Day(2) res = freq + pandas.Timedelta(hours=1) assert isinstance(res, pandas.Timedelta) assert res == pandas.Timedelta(days=1, hours=1) res = freq + pandas.Timedelta(nanoseconds=1) assert isinstance(res, pandas.Timedelta) assert res == pandas.Timedelta(days=1, nanoseconds=1) def compare_series_dt_tz(result, expected, typ, version): # 8260 # dtype is object < 0.17.0 if LooseVersion(version) < LooseVersion('0.17.0'): expected = expected.astype(object) tm.assert_series_equal(result, expected) else: tm.assert_series_equal(result, expected) def compare_series_cat(result, expected, typ, version): # Categorical dtype is added in 0.15.0 # ordered is changed in 0.16.0 if LooseVersion(version) < LooseVersion('0.15.0'): tm.assert_series_equal(result, expected, check_dtype=False, check_categorical=False) elif LooseVersion(version) < LooseVersion('0.16.0'): tm.assert_series_equal(result, expected, check_categorical=False) else: tm.assert_series_equal(result, expected) def compare_frame_dt_mixed_tzs(result, expected, typ, version): # 8260 # dtype is object < 0.17.0 if LooseVersion(version) < LooseVersion('0.17.0'): expected = expected.astype(object) tm.assert_frame_equal(result, expected) else: tm.assert_frame_equal(result, expected) def compare_frame_cat_onecol(result, expected, typ, version): # Categorical dtype is added in 0.15.0 # ordered is changed in 0.16.0 if LooseVersion(version) < LooseVersion('0.15.0'): tm.assert_frame_equal(result, expected, check_dtype=False, check_categorical=False) elif LooseVersion(version) < LooseVersion('0.16.0'): tm.assert_frame_equal(result, expected, check_categorical=False) else: tm.assert_frame_equal(result, expected) def compare_frame_cat_and_float(result, expected, typ, version): compare_frame_cat_onecol(result, expected, typ, version) def compare_index_period(result, expected, typ, version): tm.assert_index_equal(result, expected) assert isinstance(result.freq, MonthEnd) assert result.freq == MonthEnd() assert result.freqstr == 'M' tm.assert_index_equal(result.shift(2), expected.shift(2)) def compare_sp_frame_float(result, expected, typ, version): if LooseVersion(version) <= LooseVersion('0.18.1'): tm.assert_sp_frame_equal(result, expected, exact_indices=False, check_dtype=False) else: tm.assert_sp_frame_equal(result, expected) files = glob.glob(os.path.join(os.path.dirname(__file__), "data", "legacy_pickle", "*", "*.pickle")) @pytest.fixture(params=files) def legacy_pickle(request, datapath): return datapath(request.param) # --------------------- # tests # --------------------- def test_pickles(current_pickle_data, legacy_pickle): if not is_platform_little_endian(): pytest.skip("known failure on non-little endian") version = os.path.basename(os.path.dirname(legacy_pickle)) with catch_warnings(record=True): compare(current_pickle_data, legacy_pickle, version) def test_round_trip_current(current_pickle_data): try: import cPickle as c_pickle def c_pickler(obj, path): with open(path, 'wb') as fh: c_pickle.dump(obj, fh, protocol=-1) def c_unpickler(path): with open(path, 'rb') as fh: fh.seek(0) return c_pickle.load(fh) except: c_pickler = None c_unpickler = None import pickle as python_pickle def python_pickler(obj, path): with open(path, 'wb') as fh: python_pickle.dump(obj, fh, protocol=-1) def python_unpickler(path): with open(path, 'rb') as fh: fh.seek(0) return python_pickle.load(fh) data = current_pickle_data for typ, dv in data.items(): for dt, expected in dv.items(): for writer in [pd.to_pickle, c_pickler, python_pickler]: if writer is None: continue with tm.ensure_clean() as path: # test writing with each pickler writer(expected, path) # test reading with each unpickler result = pd.read_pickle(path) compare_element(result, expected, typ) if c_unpickler is not None: result = c_unpickler(path) compare_element(result, expected, typ) result = python_unpickler(path) compare_element(result, expected, typ) def test_pickle_v0_14_1(datapath): cat = pd.Categorical(values=['a', 'b', 'c'], ordered=False, categories=['a', 'b', 'c', 'd']) pickle_path = datapath('io', 'data', 'categorical_0_14_1.pickle') # This code was executed once on v0.14.1 to generate the pickle: # # cat = Categorical(labels=np.arange(3), levels=['a', 'b', 'c', 'd'], # name='foobar') # with open(pickle_path, 'wb') as f: pickle.dump(cat, f) # tm.assert_categorical_equal(cat, pd.read_pickle(pickle_path)) def test_pickle_v0_15_2(datapath): # ordered -> _ordered # GH 9347 cat = pd.Categorical(values=['a', 'b', 'c'], ordered=False, categories=['a', 'b', 'c', 'd']) pickle_path = datapath('io', 'data', 'categorical_0_15_2.pickle') # This code was executed once on v0.15.2 to generate the pickle: # # cat = Categorical(labels=np.arange(3), levels=['a', 'b', 'c', 'd'], # name='foobar') # with open(pickle_path, 'wb') as f: pickle.dump(cat, f) # tm.assert_categorical_equal(cat, pd.read_pickle(pickle_path)) def test_pickle_path_pathlib(): df = tm.makeDataFrame() result = tm.round_trip_pathlib(df.to_pickle, pd.read_pickle) tm.assert_frame_equal(df, result) def test_pickle_path_localpath(): df = tm.makeDataFrame() result = tm.round_trip_localpath(df.to_pickle, pd.read_pickle) tm.assert_frame_equal(df, result) # --------------------- # test pickle compression # --------------------- @pytest.fixture def get_random_path(): return u'__%s__.pickle' % tm.rands(10) class TestCompression(object): _compression_to_extension = { None: ".none", 'gzip': '.gz', 'bz2': '.bz2', 'zip': '.zip', 'xz': '.xz', } def compress_file(self, src_path, dest_path, compression): if compression is None: shutil.copyfile(src_path, dest_path) return if compression == 'gzip': import gzip f = gzip.open(dest_path, "w") elif compression == 'bz2': import bz2 f = bz2.BZ2File(dest_path, "w") elif compression == 'zip': import zipfile zip_file = zipfile.ZipFile(dest_path, "w", compression=zipfile.ZIP_DEFLATED) zip_file.write(src_path, os.path.basename(src_path)) elif compression == 'xz': lzma = pandas.compat.import_lzma() f = lzma.LZMAFile(dest_path, "w") else: msg = 'Unrecognized compression type: {}'.format(compression) raise ValueError(msg) if compression != "zip": with open(src_path, "rb") as fh: f.write(fh.read()) f.close() def test_write_explicit(self, compression, get_random_path): base = get_random_path path1 = base + ".compressed" path2 = base + ".raw" with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2: df = tm.makeDataFrame() # write to compressed file df.to_pickle(p1, compression=compression) # decompress with tm.decompress_file(p1, compression=compression) as f: with open(p2, "wb") as fh: fh.write(f.read()) # read decompressed file df2 = pd.read_pickle(p2, compression=None) tm.assert_frame_equal(df, df2) @pytest.mark.parametrize('compression', ['', 'None', 'bad', '7z']) def test_write_explicit_bad(self, compression, get_random_path): with tm.assert_raises_regex(ValueError, "Unrecognized compression type"): with tm.ensure_clean(get_random_path) as path: df = tm.makeDataFrame() df.to_pickle(path, compression=compression) @pytest.mark.parametrize('ext', [ '', '.gz', '.bz2', '.no_compress', pytest.param('.xz', marks=td.skip_if_no_lzma) ]) def test_write_infer(self, ext, get_random_path): base = get_random_path path1 = base + ext path2 = base + ".raw" compression = None for c in self._compression_to_extension: if self._compression_to_extension[c] == ext: compression = c break with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2: df = tm.makeDataFrame() # write to compressed file by inferred compression method df.to_pickle(p1) # decompress with tm.decompress_file(p1, compression=compression) as f: with open(p2, "wb") as fh: fh.write(f.read()) # read decompressed file df2 = pd.read_pickle(p2, compression=None) tm.assert_frame_equal(df, df2) def test_read_explicit(self, compression, get_random_path): base = get_random_path path1 = base + ".raw" path2 = base + ".compressed" with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2: df = tm.makeDataFrame() # write to uncompressed file df.to_pickle(p1, compression=None) # compress self.compress_file(p1, p2, compression=compression) # read compressed file df2 = pd.read_pickle(p2, compression=compression) tm.assert_frame_equal(df, df2) @pytest.mark.parametrize('ext', [ '', '.gz', '.bz2', '.zip', '.no_compress', pytest.param('.xz', marks=td.skip_if_no_lzma) ]) def test_read_infer(self, ext, get_random_path): base = get_random_path path1 = base + ".raw" path2 = base + ext compression = None for c in self._compression_to_extension: if self._compression_to_extension[c] == ext: compression = c break with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2: df = tm.makeDataFrame() # write to uncompressed file df.to_pickle(p1, compression=None) # compress self.compress_file(p1, p2, compression=compression) # read compressed file by inferred compression method df2 = pd.read_pickle(p2) tm.assert_frame_equal(df, df2) # --------------------- # test pickle compression # --------------------- class TestProtocol(object): @pytest.mark.parametrize('protocol', [-1, 0, 1, 2]) def test_read(self, protocol, get_random_path): with tm.ensure_clean(get_random_path) as path: df = tm.makeDataFrame() df.to_pickle(path, protocol=protocol) df2 = pd.read_pickle(path) tm.assert_frame_equal(df, df2) @pytest.mark.parametrize('protocol', [3, 4]) @pytest.mark.skipif(PY3, reason="Testing invalid parameters for Python 2") def test_read_bad_versions(self, protocol, get_random_path): # For Python 2, HIGHEST_PROTOCOL should be 2. msg = ("pickle protocol {protocol} asked for; the highest available " "protocol is 2").format(protocol=protocol) with tm.assert_raises_regex(ValueError, msg): with tm.ensure_clean(get_random_path) as path: df = tm.makeDataFrame() df.to_pickle(path, protocol=protocol)