# flake8: noqa """ Expose public exceptions & warnings """ from pandas._libs.tslib import OutOfBoundsDatetime class PerformanceWarning(Warning): """ Warning raised when there is a possible performance impact. """ class UnsupportedFunctionCall(ValueError): """ Exception raised when attempting to call a numpy function on a pandas object, but that function is not supported by the object e.g. ``np.cumsum(groupby_object)``. """ class UnsortedIndexError(KeyError): """ Error raised when attempting to get a slice of a MultiIndex, and the index has not been lexsorted. Subclass of `KeyError`. .. versionadded:: 0.20.0 """ class ParserError(ValueError): """ Exception that is raised by an error encountered in `pd.read_csv`. """ class DtypeWarning(Warning): """ Warning raised when reading different dtypes in a column from a file. Raised for a dtype incompatibility. This can happen whenever `read_csv` or `read_table` encounter non-uniform dtypes in a column(s) of a given CSV file. See Also -------- pandas.read_csv : Read CSV (comma-separated) file into a DataFrame. pandas.read_table : Read general delimited file into a DataFrame. Notes ----- This warning is issued when dealing with larger files because the dtype checking happens per chunk read. Despite the warning, the CSV file is read with mixed types in a single column which will be an object type. See the examples below to better understand this issue. Examples -------- This example creates and reads a large CSV file with a column that contains `int` and `str`. >>> df = pd.DataFrame({'a': (['1'] * 100000 + ['X'] * 100000 + ... ['1'] * 100000), ... 'b': ['b'] * 300000}) >>> df.to_csv('test.csv', index=False) >>> df2 = pd.read_csv('test.csv') ... # DtypeWarning: Columns (0) have mixed types Important to notice that ``df2`` will contain both `str` and `int` for the same input, '1'. >>> df2.iloc[262140, 0] '1' >>> type(df2.iloc[262140, 0]) >>> df2.iloc[262150, 0] 1 >>> type(df2.iloc[262150, 0]) One way to solve this issue is using the `dtype` parameter in the `read_csv` and `read_table` functions to explicit the conversion: >>> df2 = pd.read_csv('test.csv', sep=',', dtype={'a': str}) No warning was issued. >>> import os >>> os.remove('test.csv') """ class EmptyDataError(ValueError): """ Exception that is thrown in `pd.read_csv` (by both the C and Python engines) when empty data or header is encountered. """ class ParserWarning(Warning): """ Warning raised when reading a file that doesn't use the default 'c' parser. Raised by `pd.read_csv` and `pd.read_table` when it is necessary to change parsers, generally from the default 'c' parser to 'python'. It happens due to a lack of support or functionality for parsing a particular attribute of a CSV file with the requested engine. Currently, 'c' unsupported options include the following parameters: 1. `sep` other than a single character (e.g. regex separators) 2. `skipfooter` higher than 0 3. `sep=None` with `delim_whitespace=False` The warning can be avoided by adding `engine='python'` as a parameter in `pd.read_csv` and `pd.read_table` methods. See Also -------- pd.read_csv : Read CSV (comma-separated) file into DataFrame. pd.read_table : Read general delimited file into DataFrame. Examples -------- Using a `sep` in `pd.read_csv` other than a single character: >>> import io >>> csv = u'''a;b;c ... 1;1,8 ... 1;2,1''' >>> df = pd.read_csv(io.StringIO(csv), sep='[;,]') ... # ParserWarning: Falling back to the 'python' engine... Adding `engine='python'` to `pd.read_csv` removes the Warning: >>> df = pd.read_csv(io.StringIO(csv), sep='[;,]', engine='python') """ class MergeError(ValueError): """ Error raised when problems arise during merging due to problems with input data. Subclass of `ValueError`. """ class NullFrequencyError(ValueError): """ Error raised when a null `freq` attribute is used in an operation that needs a non-null frequency, particularly `DatetimeIndex.shift`, `TimedeltaIndex.shift`, `PeriodIndex.shift`. """ class AccessorRegistrationWarning(Warning): """Warning for attribute conflicts in accessor registration.""" class AbstractMethodError(NotImplementedError): """Raise this error instead of NotImplementedError for abstract methods while keeping compatibility with Python 2 and Python 3. """ def __init__(self, class_instance, methodtype='method'): types = {'method', 'classmethod', 'staticmethod', 'property'} if methodtype not in types: msg = 'methodtype must be one of {}, got {} instead.'.format( methodtype, types) raise ValueError(msg) self.methodtype = methodtype self.class_instance = class_instance def __str__(self): if self.methodtype == 'classmethod': name = self.class_instance.__name__ else: name = self.class_instance.__class__.__name__ msg = "This {methodtype} must be defined in the concrete class {name}" return (msg.format(methodtype=self.methodtype, name=name))