"""Test functions for fftpack.helper module Copied from fftpack.helper by Pearu Peterson, October 2005 """ from __future__ import division, absolute_import, print_function import numpy as np from numpy.testing import ( run_module_suite, assert_array_almost_equal, assert_equal, ) from numpy import fft from numpy import pi from numpy.fft.helper import _FFTCache class TestFFTShift(object): def test_definition(self): x = [0, 1, 2, 3, 4, -4, -3, -2, -1] y = [-4, -3, -2, -1, 0, 1, 2, 3, 4] assert_array_almost_equal(fft.fftshift(x), y) assert_array_almost_equal(fft.ifftshift(y), x) x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] assert_array_almost_equal(fft.fftshift(x), y) assert_array_almost_equal(fft.ifftshift(y), x) def test_inverse(self): for n in [1, 4, 9, 100, 211]: x = np.random.random((n,)) assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x) def test_axes_keyword(self): freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]] shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]] assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted) assert_array_almost_equal(fft.fftshift(freqs, axes=0), fft.fftshift(freqs, axes=(0,))) assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs) assert_array_almost_equal(fft.ifftshift(shifted, axes=0), fft.ifftshift(shifted, axes=(0,))) class TestFFTFreq(object): def test_definition(self): x = [0, 1, 2, 3, 4, -4, -3, -2, -1] assert_array_almost_equal(9*fft.fftfreq(9), x) assert_array_almost_equal(9*pi*fft.fftfreq(9, pi), x) x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] assert_array_almost_equal(10*fft.fftfreq(10), x) assert_array_almost_equal(10*pi*fft.fftfreq(10, pi), x) class TestRFFTFreq(object): def test_definition(self): x = [0, 1, 2, 3, 4] assert_array_almost_equal(9*fft.rfftfreq(9), x) assert_array_almost_equal(9*pi*fft.rfftfreq(9, pi), x) x = [0, 1, 2, 3, 4, 5] assert_array_almost_equal(10*fft.rfftfreq(10), x) assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x) class TestIRFFTN(object): def test_not_last_axis_success(self): ar, ai = np.random.random((2, 16, 8, 32)) a = ar + 1j*ai axes = (-2,) # Should not raise error fft.irfftn(a, axes=axes) class TestFFTCache(object): def test_basic_behaviour(self): c = _FFTCache(max_size_in_mb=1, max_item_count=4) # Put c.put_twiddle_factors(1, np.ones(2, dtype=np.float32)) c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32)) # Get assert_array_almost_equal(c.pop_twiddle_factors(1), np.ones(2, dtype=np.float32)) assert_array_almost_equal(c.pop_twiddle_factors(2), np.zeros(2, dtype=np.float32)) # Nothing should be left. assert_equal(len(c._dict), 0) # Now put everything in twice so it can be retrieved once and each will # still have one item left. for _ in range(2): c.put_twiddle_factors(1, np.ones(2, dtype=np.float32)) c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32)) assert_array_almost_equal(c.pop_twiddle_factors(1), np.ones(2, dtype=np.float32)) assert_array_almost_equal(c.pop_twiddle_factors(2), np.zeros(2, dtype=np.float32)) assert_equal(len(c._dict), 2) def test_automatic_pruning(self): # That's around 2600 single precision samples. c = _FFTCache(max_size_in_mb=0.01, max_item_count=4) c.put_twiddle_factors(1, np.ones(200, dtype=np.float32)) c.put_twiddle_factors(2, np.ones(200, dtype=np.float32)) assert_equal(list(c._dict.keys()), [1, 2]) # This is larger than the limit but should still be kept. c.put_twiddle_factors(3, np.ones(3000, dtype=np.float32)) assert_equal(list(c._dict.keys()), [1, 2, 3]) # Add one more. c.put_twiddle_factors(4, np.ones(3000, dtype=np.float32)) # The other three should no longer exist. assert_equal(list(c._dict.keys()), [4]) # Now test the max item count pruning. c = _FFTCache(max_size_in_mb=0.01, max_item_count=2) c.put_twiddle_factors(2, np.empty(2)) c.put_twiddle_factors(1, np.empty(2)) # Can still be accessed. assert_equal(list(c._dict.keys()), [2, 1]) c.put_twiddle_factors(3, np.empty(2)) # 1 and 3 can still be accessed - c[2] has been touched least recently # and is thus evicted. assert_equal(list(c._dict.keys()), [1, 3]) # One last test. We will add a single large item that is slightly # bigger then the cache size. Some small items can still be added. c = _FFTCache(max_size_in_mb=0.01, max_item_count=5) c.put_twiddle_factors(1, np.ones(3000, dtype=np.float32)) c.put_twiddle_factors(2, np.ones(2, dtype=np.float32)) c.put_twiddle_factors(3, np.ones(2, dtype=np.float32)) c.put_twiddle_factors(4, np.ones(2, dtype=np.float32)) assert_equal(list(c._dict.keys()), [1, 2, 3, 4]) # One more big item. This time it is 6 smaller ones but they are # counted as one big item. for _ in range(6): c.put_twiddle_factors(5, np.ones(500, dtype=np.float32)) # '1' no longer in the cache. Rest still in the cache. assert_equal(list(c._dict.keys()), [2, 3, 4, 5]) # Another big item - should now be the only item in the cache. c.put_twiddle_factors(6, np.ones(4000, dtype=np.float32)) assert_equal(list(c._dict.keys()), [6]) if __name__ == "__main__": run_module_suite()